Article contents
Exchangeable and sampling-consistent distributions on rooted binary trees
Published online by Cambridge University Press: 14 January 2022
Abstract
We introduce a notion of finite sampling consistency for phylogenetic trees and show that the set of finitely sampling-consistent and exchangeable distributions on n-leaf phylogenetic trees is a polytope. We use this polytope to show that the set of all exchangeable and sampling-consistent distributions on four-leaf phylogenetic trees is exactly Aldous’ beta-splitting model, and give a description of some of the vertices for the polytope of distributions on five leaves. We also introduce a new semialgebraic set of exchangeable and sampling consistent models we call the multinomial model and use it to characterize the set of exchangeable and sampling-consistent distributions. Using this new model, we obtain a finite de Finetti-type theorem for rooted binary trees in the style of Diaconis’ theorem on finite exchangeable sequences.
MSC classification
- Type
- Original Article
- Information
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust
References
- 1
- Cited by