Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T00:51:07.413Z Has data issue: false hasContentIssue false

If bone is the answer, then what is the question?

Published online by Cambridge University Press:  20 October 2000

R. HUISKES
Affiliation:
Orthopaedic Research Laboratory, University of Nijmegen, The Netherlands
Get access

Abstract

In the 19th century, several scientists attempted to relate bone trabecular morphology to its mechanical, load-bearing function. It was suggested that bone architecture was an answer to requirements of optimal stress transfer, pairing maximal strength to minimal weight, according to particular mathematical design rules. Using contemporary methods of analysis, stress transfer in bones was studied and compared with anatomical specimens, from which it was hypothesised that trabecular architecture is associated with stress trajectories. Others focused on the biological processes by which trabecular architectures are formed and on the question of how bone could maintain the relationship between external load and architecture in a variable functional environment. Wilhelm Roux introduced the principle of functional adaptation as a self- organising process based in the tissues. Julius Wolff, anatomist and orthopaedic surgeon, entwined these 3 issues in his book The Law of Bone Remodeling (translation), which set the stage for biomechanical research goals in our day. ‘Wolff's Law’ is a question rather than a law, asking for the requirements of structural optimisation. In this article, based on finite element analysis (FEA) results of stress transfer in bones, it is argued that it was the wrong question, putting us on the wrong foot. The maximal strength/minimal weight principle does not provide a rationale for architectural formation or adaptation; the similarity between trabecular orientation and stress trajectories is circumstantial, not causal. Based on computer simulations of bone remodelling as a regulatory process, governed by mechanical usage and orchestrated by osteocyte mechanosensitivity, it is shown that Roux's paradigm, conversely, is a realistic proposition. Put in a quantitative regulatory context, it can predict both trabecular formation and adaptation. Hence, trabecular architecture is not an answer to Wolff's question, in the sense of this article's title. There are no mathematical optimisation rules for bone architecture; there is just a biological regulatory process, producing a structure adapted to mechanical demands by the nature of its characteristics, adequate for evolutionary endurance. It is predicted that computer simulation of this process can help us to unravel its secrets.

Type
Review
Copyright
© Anatomical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)