Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T23:04:12.189Z Has data issue: false hasContentIssue false

Glial–glial and glial–neuronal interfaces in radiation-induced, glia-depleted spinal cord

Published online by Cambridge University Press:  01 January 1997

SHIRLEY ANN GILMORE
Affiliation:
Department of Anatomy University of Arkansas for Medical Sciences Little Rock, Arkansas, USA
TERRY J. SIMS
Affiliation:
Department of Anatomy University of Arkansas for Medical Sciences Little Rock, Arkansas, USA
Get access

Abstract

This review summarises some of the major findings derived from studies using the model of a glia-depleted environment developed and characterised in this laboratory. Glial depletion is achieved by exposure of the immature rodent spinal cord to x-radiation which markedly reduces both astrocyte and oligodendrocyte populations and severely impairs myelination. This glia-depleted, hypomyelinated state presents a unique opportunity to examine aspects of spinal cord maturation in the absence of a normal glial population. An associated sequela within 2–3 wk following irradiation is the appearance of Schwann cells in the dorsal portion of the spinal cord. Characteristics of these intraspinal Schwann cells, their patterns of myelination or ensheathment, and their interrelations with the few remaining central glia have been examined. A later sequela is the development of Schwann cells in the ventral aspect of the spinal cord where they occur predominantly in the grey matter. Characteristics of these ventrally situated intraspinal Schwann cells are compared with those of Schwann cells located dorsally. Recently, injury responses have been defined in the glia-depleted spinal cord subsequent to the lesioning of dorsal spinal nerve roots. In otherwise normal animals, dorsal nerve root injury induces an astrocytic reaction within the spinal segments with which the root(s) is/are associated. Lesioning of the 4th lumbar dorsal root on the right side in irradiated or nonirradiated animals results in markedly different glial responses with little astrocytic scarring in the irradiated animals. Tracing studies reveal that these lesioned dorsal root axons regrow rather robustly into the spinal cord in irradiated but not in nonirradiated animals. To examine role(s) of glial cells in preventing this axonal regrowth, glial cells are now being added back to this glia-depleted environment through transplantation of cultured glia into the irradiated area. Transplanted astrocytes establish barrier-like arrangements within the irradiated cords and prevent axonal regrowth into the cord. Studies using other types of glial cultures (oligodendrocyte or mixed) are ongoing.

Type
Research Article
Copyright
© Anatomical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)