Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T00:02:45.238Z Has data issue: false hasContentIssue false

Structure, distribution and innervation of muscle spindles in avian fast and slow skeletal muscle

Published online by Cambridge University Press:  01 April 1999

WILLIAM K. OVALLE
Affiliation:
Department of Anatomy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
PIERRE R. DOW
Affiliation:
Department of Anatomy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
PATRICK C. NAHIRNEY
Affiliation:
Department of Anatomy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
Get access

Abstract

Muscle spindles in 2 synergistic avian skeletal muscles, the anterior (ALD) and posterior (PLD) latissimus dorsi, were studied by light and electron microscopy to determine whether morphological or quantitative differences existed between these sensory receptors. Differences were found in the density, distribution and location of muscle spindles in the 2 muscles. They also differed with respect to the morphology of their capsules and intracapsular components. The slow ALD possessed muscle spindles which were evenly distributed throughout the muscle, whereas in the fast PLD they were mainly concentrated around the single nerve entry point into the muscle. The muscle spindle index (number of spindles per gram wet muscle weight) in the ALD was more than double that of its fast-twitch PLD counterpart (130.5±2.0 vs 55.4±2.0 respectively, n=6). The number of intrafusal fibres per spindle ranged from 1 to 8 in the ALD and 2 to 9 in the PLD, and their diameters varied from 5.0 to 16.0 μm and 4.5 to 18.5 μm, respectively. Large diameter intrafusal fibres were more frequently encountered in spindles of the PLD. Unique to the ALD was the presence of monofibre muscle spindles (12.7% of total spindles observed in ALD) which contained a solitary intrafusal fibre. In muscle spindles of both the ALD and PLD, sensory nerve endings terminated in a spiral fashion on the intrafusal fibres in their equatorial regions. Motor innervation was restricted to either juxtaequatorial or polar regions of the intrafusal fibres. Outer capsule components were extensive in polar and juxtaequatorial regions of ALD spindles, whereas inner capsule cells of PLD spindles were more numerous in juxtaequatorial and equatorial regions. Overall, muscle spindles of the PLD exhibited greater complexity with respect to the number of intrafusal fibres per spindle, range of intrafusal fibre diameters and development of their inner capsules. It is postulated that the differences in muscle spindle density and structure observed in this study reflect the function of the muscles in which they reside.

Type
Research Article
Copyright
© Anatomical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)