Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T03:09:14.745Z Has data issue: false hasContentIssue false

A strong myelin thickness-axon size correlation emerges in developing nerves despite independent growth of both parameters

Published online by Cambridge University Press:  01 August 1998

J. FRAHER
Affiliation:
Department of Anatomy, University College, Cork, Ireland
P. DOCKERY
Affiliation:
Department of Anatomy, University College, Cork, Ireland
Get access

Abstract

The axon determines whether or not it is myelinated by the Schwann cell. At maturity there is a positive correlation between sheath thickness and axon calibre. This correlation is initially very low or absent, but gradually strengthens during development. This increase could come about because the axon continuously controls Schwann cell myelinating activity, so that a given axon calibre is associated with a particular myelin sheath thickness, an interaction which would entail the Schwann cell continuously monitoring and responding to axon size. This seems unnecessarily complex. This theoretical study shows that the strong correlation between the 2 parameters within a given myelinated fibre population may come about in a much simpler way than outlined above. This is demonstrated by modelling the growth and myelination of a hypothetical population, utilising data from earlier studies on cervical ventral motoneuron axon development. The hypothesis tested shows that the only instructive interactions by the axon on the Schwann cell necessary for the strong correlation between the 2 parameters to emerge are for the initiation of myelination, its continuation and its termination. These could result from a single stimulus being switched on, persisting for a time and being switched off. Under this influence, the Schwann cell is assumed to proceed to form the myelin sheath at a constant rate which it itself inherently determines, in the absence of any quantitative influence exerted by the axon. This continues until the stimulus for myelination ceases to emanate from the axon. The validity of the hypothesis is demonstrated, because the resulting myelin-axon relationships correspond closely to those observed during development.

Type
Research Article
Copyright
© Anatomical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)