Published online by Cambridge University Press: 27 March 2009
In a flinty clay loam at Rothamsted, nitrate concentrations in 0–13 and 13–26 cm layers of plots given all N-sources at 100 kgN/ha in early October were very small by mid-January. Incorporating the fertilizer in the first 13 cm slightly accelerated this loss. Sulphur-coated urea (SCU) maintained smaller nitrate concentrations than other sources in both layers. By early March SCU plots alone had slightly larger nitrate concentrations than the controls in the 0–26 cm layer, whilst in the 26–52 cm layer all N plots had slightly larger concentrations than the controls. Spring barley, given no more N and harvested green at ear emergence, took more N from all N plots than from the controls, most from ammonium sulphate and least from urea and SCU, but differenoes between sources were not significant. The nitrate loss had a negligible effect on soil pH and exchangeable cations.
Calcium nitrate leaching data were used to test the equation of Burns (1975) and other simple equations which considered the effects of successive percolations in a two-layer system assuming that the layers either could or could not become temporarily oversaturated. All the equations underestimated leaching unless the most inaccessible soil water was left out of the calculations and gave best results when only gravitational water was taken into acoount.