Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T08:05:46.010Z Has data issue: false hasContentIssue false

Variations in Motor Activity and in Food and Water Intake over 24 h Periods in Pigs

Published online by Cambridge University Press:  27 March 2009

D. L. Ingram
Affiliation:
A.R.C. Institute of Animal Physiology, Babraham, Cambridge
D. E. Walters
Affiliation:
A.R.C. Statistics Group, Department of Applied Biology, Cambridge
K. F. Legge
Affiliation:
A.R.C. Institute of Animal Physiology, Babraham, Cambridge

Summary

Groups of weaner pigs, and single animals, were observed in a temperature-controlled room isolated from external noise and light for periods of up to 4 weeks. Continuous records were made of motor activity, food intake and water consumption.

In the presence of a cycle of 12 h light and 12 h dark at 25 °C groups of pigs were most active in the light and took most of their food towards the end of the light period. Single pigs also tended to be more active in the light, but the rhythms were less marked, and one animal was most active during the dark period.

In continuous light, rhythms of activity and ingestion tended to collapse after only a few days, particularly in pigs which were kept by themselves. When the ambient temperature was increased to 35 °C during 12 h light and decreased to 25 °C during 12 h dark, a group of pigs was most active in the dark.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aschoff, J. (1979). Circadian rhythms: general features and endocrinological aspects. In Endocrine Rhythms (ed. Krieger, D. T.), pp. 162. New York: Raven Press.Google Scholar
Baldwin, B. A. & Stephens, D. B. (1973). The effects of conditioned behaviour and environmental factors on plasma corticoid levels in pigs. Physiology and Behaviour 10, 267274.CrossRefGoogle ScholarPubMed
Box, B. M., Stauding, D. & Mogenson, G. J. (1978). Light dark rhythms and drinking behavior in the rat. Behavioral Biology 24, 107112.CrossRefGoogle ScholarPubMed
Briedermann, L. (1971). Ermitt langen zur Aktivitatperiodik des Meteleuropaischen Wildschweines (Sus scrofa L). Zoologische Garten Leipzig 40, 302327.Google Scholar
Dantzer, R. (1973). Étude de la stabilisation des rhythmes d'activité locomotrice de porcelets introduits dans un nouvel environment. Journal de Physiologie, Paris 66, 495503.Google Scholar
Dantzer, R. & Mailhe, G. (1972). Mise en evidenced d'un rhythme dans le comporment. d'activité mortice du porcelet. Comptes Rendus Séances de la Société de Biologie et de ses Filiales 166, 456460.Google Scholar
Heal, J. W. (1975). An animal activity monitor using a microwave Doppler system. Medical Biological Engineering 13, 317.CrossRefGoogle ScholarPubMed
Ingram, D. L. & Legge, K. F. (1970 a). Variations in deep body temperature in the young unrestrained pig over the 24 h period. Journal of Physiology, London 210, 989998.CrossRefGoogle Scholar
Ingram, D. L. & Legge, K. F. (1970 b). The thermoregulatory behaviour of young pigs in a natural environment. Physiology and Behaviour 5, 981987.CrossRefGoogle Scholar
Ingram, D. L. & Legge, K. F. (1974). Effects of environmental temperature on food intake in growing pigs. Comparative Biochemistry and Physiology 48, 573581.CrossRefGoogle ScholarPubMed
Ingram, D. L. & Mount, L. E. (1973). The effects of food intake and fasting on 24 hourly variations in body temperature in the young pig. Pflügers Archiv für die Gesamte Physiologie 339. 299304.CrossRefGoogle ScholarPubMed
Ingram, D. L., Walters, D. E. & Legge, K. F. (1975). Variations in behavioural thermoregulation in the young pig over 24 h periods. Physiology and Behaviour 14, 689695.CrossRefGoogle Scholar
Kendall, M. G. (1973). Time Series. London: Griffin.Google Scholar
Mount, L. E. (1968). Climatic Physiology of the Pig. London: E. Arnold.Google Scholar
Pohl, H. (1968 a). Einfluss der Temperatur auf die freilaufende circudiane Activitätsperiodik bein Würmblüterm. Zeitschrift für vergleichende Physiologie 58, 364380.CrossRefGoogle Scholar
Pohl, H. (1968 b). Winkung der Temperatur auf die mit Licht synehronisierte Aetivitätsperiodik bein Wärmblüterm. Zeitschrift für vergleichende Physiologie 58, 381394.CrossRefGoogle Scholar
Possidente, B. & Birnbaum, S. (1979). Circadian rhythm for food and water consumption in the mouse (Mus musculus). Physiology and Behaviour 22. 657660.CrossRefGoogle ScholarPubMed
Prud'hon, M., Goussopoulos, J. & Reyne, Y. (1978). Comportement alimentaire du lupin de gavenne élevé en captivité. II. Modification induites par un décalage des periodes d'éclairement. Annales de Zootechnie 27, 101106.CrossRefGoogle Scholar
Smolensky, M., Halberg, F. & Sargent, F. (1975). Chromobiology and the life sequence. In Advances in Climatic Physiology (ed. Itoh, S., Ogata, K. and Yoshimura, H.), pp. 281318. New York: Springer – Verlag.Google Scholar
Steinbach, J. (1978). Diurnal behaviour patterns of pigs in a tropical environment. Proceedings of the 1st World Congress on Ethology Applied to Zootechnics, pp. 157163.Google Scholar
Wever, B. A. (1979). The Circadian System of Man; Results of Experiments under Temporal Isolation. New York and Berlin: Springer-Verlag.CrossRefGoogle Scholar