Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T15:43:28.509Z Has data issue: false hasContentIssue false

Use of quality seed as a means to sustainably intensify northern European barley production

Published online by Cambridge University Press:  21 December 2012

P. PELTONEN-SAINIO*
Affiliation:
MTT Agrifood Research Finland, Plant Production Research, FI-31600 Jokioinen, Finland
A. RAJALA
Affiliation:
MTT Agrifood Research Finland, Plant Production Research, FI-31600 Jokioinen, Finland
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Rates of commercial certified seed (CCS) use are low, but comprehensive upgrading of farm-saved seed (FSS) is also often neglected in northern Europe, represented in the present paper by Finland. In general, available growth resources are particularly underutilized in the northern and eastern parts of Europe, in contrast with the prime agricultural areas of western Europe. The present paper demonstrates the potential of increasing CCS use, and/or upgrading FSS, to boost yields at regional and national level. The assessment indicated that a substantial increase in CCS use in Finland, to correspond with that of Sweden and Denmark, is a basic, readily available and easily applicable means of sustainably intensifying northern European barley (Hordeum vulgare L.) production. Yield benefits averaged 440 kg/ha, corresponding to a 13% increase at national scale. Cultivar change contributed to about one-third of the benefit. At the national scale, an additional 20 000 tonnes of nitrogen (c. 8% increase) would be removed with the yields that would considerably exceed 2000 Gg annually compared with the present c. 1900 Gg total production of barley. Higher use of CCS represents a win–win situation for farmers, plant breeding companies and industry.

Type
Crops and Soils Review
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anonymous (2004). Wheat Seed Health & Seed-borne Diseases – a Guide. London, UK: HGCA.Google Scholar
Anonymous (2012). Selvitys Sertifioidun Siemenen Käytön Lisäarvosta Ja Vaikutuksesta Sadon Laatuun (Survey on Use of Commercial Certified Seed, its Added Value and Effects on Yield and Quality – in Finnish). Helsinki: Finnish Cereal Committee. Available from: http://www.vyr.fi/www/fi/tuotanto_ja_viljelytietoa/raportteja/Loppuraportti_selvitys_sertifioidun_siemenen_kayt_MTK2011.pdf (verified 28 March 2012).Google Scholar
Benjamin, L. R. (1990). Variation in time of seedling emergence within populations: a feature that determines individual growth and development. Advances in Agronomy 44, 125.CrossRefGoogle Scholar
Bindi, M. & Olesen, J. E. (2011). The responses of agriculture in Europe to climate change. Regional Environmental Change 11, 151158.Google Scholar
Boland, M., Dhuyvetter, K. & Howe, M. (2001). Economic Issues with Certified and Farmer-saved Wheat Seed. Manhattan, KS, USA: Kansas State University.Google Scholar
Chastain, T. G., Ward, K. J. & Wysocki, D. J. (1995). Stand establishment responses of soft white winter wheat to seedbed residue and seed size. Crop Science 35, 213218.Google Scholar
Egli, D. B. (2006). The role of seed in the determination of yield of grain crops. Australian Journal of Agricultural Research 57, 12371247.Google Scholar
Elsgaard, L., Børgesen, C. D., Olesen, J. E., Siebert, S., Ewert, F., Peltonen-Sainio, P., Rötter, R. & Skjelvåg, A. (2012). Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe. Food Additives & Contaminants, Part A 29, 15141526.Google Scholar
EVIRA (2011). Finnish Plant Variety Journal 2.Google Scholar
Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockstrom, J., Sheehan, J., Siebert, S., Tilman, D. & Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature 478, 337342.Google Scholar
Gan, Y., Stobbe, E. H. & Moes, J. (1992). Relative date of wheat seedling emergence and its impact on grain yield. Crop Science 32, 12751281.Google Scholar
Garstang, J. (1993). The effects of volunteers on cereal quality and profitability. Aspects of Applied Biology 35, 6774.Google Scholar
Hakala, K., Jauhiainen, L., Himanen, S. J., Rötter, R., Salo, T. & Kahiluoto, H. (2012). Sensitivity of barley varieties to weather in Finland. Journal of Agricultural Science, Cambridge 150, 145160.Google Scholar
Håkansson, I., Keller, T., Arvidsson, J. & Rydberg, T. (2012). Effects of seedbed properties on crop emergence. 5. Effects of aggregate size, sowing depth and simulated rainfall after sowing on harmful surface-layer hardening. Acta Agriculturae Scandinavica, Section B: Soil and Plant Science 62, 362373.Google Scholar
IPCC (2011). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX). A Special Report of Working Group I and Working Group II of the Intergovernmental Panel on Climate Change. Summary for Policymakers (Eds Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M. & Midgley, P. M.), pp. 119. Cambridge, UK: Cambridge University Press.Google Scholar
Johnsson, L., Hökeberg, M. & Gerhardson, B. (1998). Performance of the Pseudomonas chlororaphis biocontrol agent MA 342 against cereal seed-borne diseases in field experiments. European Journal of Plant Pathology 104, 701711.Google Scholar
Kirby, E. J. M. (1993). Effect of sowing depth on seedling emergence, growth and development in barley and wheat. Field Crops Research 35, 101111.Google Scholar
Law, J. R., Thomas, J. E., Kenyon, D. M., Thompson, P., Smith, M. J. & Cockerell, V. (2004). Variability in the distribution of seed-borne diseases in wheat seed bulks, and the derivation of sampling procedures for their detection. In Cereal Seed Health and Seed Treatment Strategies: Exploiting New Seed Testing Technology to Optimise Seed Health Decisions for Wheat. HGCA Project Report No. 340 (Eds Cockerell, V., Paveley, N. D., Clark, W. S., Thomas, J. E., Anthony, S., McEwan, M., Bates, J., Roberts, A. M. I., Law, J., Kenyon, D. M. & Mulholland, V.), pp. 6584. London: HGCA.Google Scholar
Manninen, O. & Nissilä, E. (1997). Genetic diversity among Finnish six-rowed barley cultivars based on pedigree information and DNA markers. Hereditas 126, 8793.Google Scholar
Naylor, R. E. L. & Gurmu, M. (1990). Seed vigour and water relations in wheat. Annals of Applied Biology 117, 441450.Google Scholar
Nonogaki, H., Bassel, G. W. & Bewley, J. D. (2010). Germination – still a mystery. Plant Science 179, 574581.Google Scholar
Olesen, J. E., Trnka, M., Kersebaum, K. C., Skjelvåg, A. O., Seguin, B., Peltonen-Sainio, P., Rossi, F., Kozyra, J. & Micale, F. (2011). Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy 34, 96112.Google Scholar
Paveley, N. D., Rennie, W. J., Reeves, J. C., Wray, M. W., Slawson, D. D., Clark, W. S., Cockerell, V. & Mitchell, A. G. (1996). Cereal Seed Health and Seed Treatment Strategies. HGCA Research Review No. 34. London: HGCA.Google Scholar
Peltonen-Sainio, P. (1999). Growth and development of oat with special reference to source-sink interaction and productivity. In Crop Yield: Physiology and Processes (Eds Hamel, C. & Smith, D. L.), pp. 3966. Berlin: Springer-Verlag.Google Scholar
Peltonen-Sainio, P. (2012). Crop production in a Northern climate. In Working Papers of FAO/OECD Workshop: Building Resilience for Adaptation to Climate Change in the Agriculture Sector, Chapter 4, Supporting Thematic Studies. Available online at: http://www.oecd.org/dataoecd/43/47/50062683.pdf (accessed 15 October 2012).Google Scholar
Peltonen-Sainio, P., Jauhiainen, L. & Hannukkala, A. (2007). Declining rapeseed yields in Finland: how, why and what next? Journal of Agricultural Science, Cambridge 145, 587598.Google Scholar
Peltonen-Sainio, P., Jauhiainen, L. & Laurila, I. P. (2009 a). Cereal yield trends in northern European conditions: changes in yield potential and its realisation. Field Crops Research 110, 8590.Google Scholar
Peltonen-Sainio, P., Jauhiainen, L., Hakala, K. & Ojanen, H. (2009 b). Climate change and prolongation of growing season: changes in regional potential for field crop production in Finland. Agricultural and Food Science 18, 171190.Google Scholar
Peltonen-Sainio, P., Rajala, A., Känkänen, H. & Hakala, K. (2009 c). Improving farming systems in northern European conditions. In Crop Physiology: Applications for Genetic Improvement and Agronomy (Eds Sadras, V. O. & Calderini, D.), pp. 7197. Amsterdam, The Netherlands: Elsevier.Google Scholar
Peltonen-Sainio, P., Rajala, A. & Jauhiainen, L. (2011 a). Hidden viability risks in the use of farm-saved small-grain seed. Journal of Agricultural Science, Cambridge 149, 713724.Google Scholar
Peltonen-Sainio, P., Jauhiainen, L. & Sadras, V. O. (2011 b). Phenotypic plasticity of yield and agronomic traits in cereals and rapeseed at high latitudes. Field Crops Research 124, 261269.Google Scholar
Porter, J. R., Soussana, J.-F., Fereres, E., Long, S., Mohren, F., Peltonen-Sainio, P. & Von Braun, J. (2012). European perspectives: an agronomic science plan for food security in a changing climate. In Handbook of Climate Change and Agroecosystems. Global and Regional Aspects and Implications (Eds Hillel, D. & Rosenzweig, C.), pp. 7384. ICP Series on Climate Change Impacts, Adaptation, and Mitigation. Vol. 2. London: Imperial College Press.Google Scholar
Rajala, A., Niskanen, M., Isolahti, M. & Peltonen-Sainio, P. (2011). Seed quality effects on seedling emergence, plant stand establishment and grain yield in two-row barley. Agricultural and Food Science 20, 228234.Google Scholar
Reidsma, P. & Ewert, F. (2008). Regional farm diversity can reduce vulnerability of food production to climate change. Ecology and Society 13, 38. Available from: http://www.ecologyandsociety.org/vol13/iss1/art38/ (verified 30 March 2012).Google Scholar
Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H., Nykvist, B., De Wit, C. A., Hughes, T., Van Der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P. & Foley, J. (2009). Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society 14, 32. Available online: http://www.ecologyandsociety.org/vol14/iss2/art32.Google Scholar
Soussana, J.-F., Fereres, E., Long, S. P., Mohren, F. G. M. J., Pandya-Lorch, R., Peltonen-Sainio, P., Porter, J. R., Rosswall, T. & Von Braun, J. (2012). A European science plan to sustainably increase food security under climate change. Global Change Biology 18, 32693271.Google Scholar
Stoate, C., Baldi, A., Beja, P., Boatman, N. D., Herzon, I., Van Doorn, A., De Snoo, G. R., Rakosy, L. & Ramwell, C. (2009). Ecological impacts of early 21st century agricultural change in Europe – a review. Journal of Environmental Management 91, 2246.Google Scholar
Tekrony, D. M. (1999). Planting farmer saved wheat seed – are you really saving money? University of Kentucky Wheat News 3. Available from: http://www.ca.uky.edu/ukrec/newsltrs/SEPT99W.htm (verified 15 October 2012).Google Scholar
VYR (2012). Farmers’ Sowing Plan Survey 2012. Vilja-alan Yhteistyöryhmä. Available from http://www.vyr.fi/www/fi/index.php?we_objectID=200 (verified 29 March 2012) (In Finnish)Google Scholar
Weitbrecht, K., Müller, K. & Leubner-Metzger, G. (2011). First off the mark: early seed germination. Journal of Experimental Botany 62, 32893309.Google Scholar