Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T00:36:00.380Z Has data issue: false hasContentIssue false

Transfer of transgenes for resistance to rice tungro disease into high-yielding rice cultivars through gene-based marker-assisted selection

Published online by Cambridge University Press:  26 October 2012

S. ROY
Affiliation:
Department of Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252, India
A. BANERJEE
Affiliation:
Department of Plant Pathology, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal 741252, India
J. TARAFDAR
Affiliation:
Department of Plant Pathology, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal 741252, India
B. K. SENAPATI
Affiliation:
Department of Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252, India
I. DASGUPTA*
Affiliation:
Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi 110021, India
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Rice tungro disease (RTD), caused by the simultaneous infection of rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV), is one of the major threats to sustainable rice production in South and Southeast Asia. Transgenic resistance against RTBV has been reported previously using an RNA interference (RNAi) construct (ORF IV of RTBV, placed both in sense and anti-sense orientation under CaMV 35S promoter), in the scented rice line Pusa Basmati-1 (PB-1). This construct was transferred to two high-yielding tungro-susceptible indica rice cultivars (IET4094 and IET4786) from the transgenic PB-1 rice line using back cross breeding till the BC2F3 stage. On challenge inoculation, the progenies (BC2F1) showed mild symptoms of tungro, in contrast to severe symptoms displayed by the recurrent parents. Segregation of the transgene indicated near homozygosity of the plants at the BC2F3 stage, implying that the lines can be used as a valuable resistance source for further breeding against RTD.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abhary, M. K., Anfoka, G. H., Nakhla, M. K. & Maxwell, D. P. (2006). Post-transcriptional gene silencing in controlling viruses of the Tomato yellow leaf curl virus complex. Archives of Virology 151, 23492363.Google Scholar
Aragao, F. J. L. & Faria, J. C. (2009). First transgenic geminivirus-resistant plant in the field. Nature Biotechnology 27, 10861088.CrossRefGoogle ScholarPubMed
Azzam, O. & Chancellor, T. C. B. (2002). The biology, epidemiology and management of rice tungro disease in Asia. Plant Disease 86, 88100.CrossRefGoogle ScholarPubMed
Baisakh, N., Rehana, S., Rai, M., Oliva, N., Tan, J., Mackill, D. J., Khush, G. S., Datta, K. & Datta, S. K. (2006). Marker-free transgenic (MFT) near-isogenic introgression lines (NIILs) of ‘golden’ indica rice (cv. IR64) with accumulation of provitamin A in the endosperm tissue. Plant Biotechnology Journal 4, 467475.Google Scholar
Bonfim, K., Faria, J. C., Nogueira, E. O., Mendes, É. A. & Aragão, F. J. (2007). RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Molecular Plant Microbe Interaction 20, 717726.Google Scholar
Bradford, M. M. (1976). A rapid and sensitive method for the quantification microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle Scholar
Chicas, A. & Macino, G. (2001). Characteristics of post-transcriptional gene silencing. EMBO Reports 2, 992996.Google Scholar
Dahal, G., Hibino, H., Cabunagan, R. C., Tiongco, E. R., Flores, Z. M. & Aguiero, V. M. (1990). Changes in cultivar reactions to tungro due to changes in ‘virulence’ of leafhopper vector. Phytopathology 80, 659665.CrossRefGoogle Scholar
Dai, S. & Beachy, R. N. (2009). Genetic engineering of rice to resist rice tungro disease. In vitro Cellular and Developmental Biology – Plant 45, 517524.Google Scholar
Dai, S., Wei, X., Alfonso, A. A., Pei, L., Duque, U. G., Zhang, Z., Babb, G. M. & Beachy, R. N. (2008). Transgenic rice plants that over express transcription factors RF2a and RF2b are tolerant to rice tungro virus replication and disease. Proceedings of the National Academy of Sciences of the USA 105, 2101221016.Google Scholar
Dasgupta, I., Hull, R., Eastop, S., Poggi-Pollini, C., Blakebrough, M. L., Boulton, M. I. & Davies, J. W. (1991). Rice tungro bacilliform virus DNA independently infects rice after Agrobacterium mediated transfer. Journal of General Virology 72, 12151221.Google Scholar
Datta, K., Baisakh, N., Thet, K. M., Tu, J. & Datta, S. K. (2002). Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theoretical and Applied Genetics 106, 18.CrossRefGoogle ScholarPubMed
Dellaporta, S. L., Wood, J. & Hicks, J. B. (1983). A plant DNA mini-preparation, version II. Plant Molecular Biology Reporter 1, 1921.Google Scholar
Ganesan, U., Suri, S. S., Rajasubramaniam, S., Rajam, M. V. & Dasgupta, I. (2009). Transgenic expression of coat protein gene of Rice tungro bacilliform virus in rice reduces the accumulation of viral DNA in inoculated plants. Virus Genes 39, 113119.CrossRefGoogle ScholarPubMed
Herr, A. J. (2005). Pathways through the small RNA world of plants. FEBS Letters 579, 58795888.Google Scholar
Hibino, H. & Cabauatan, P. Q. (1987). Infectivity neutralization of rice tungro-associated viruses acquired by vectors leafhoppers. Phytopathology 77, 473476.Google Scholar
Hibino, H., Roechan, M. & Sudarisman, S. (1978). Association of two types of virus particles with Penyakit Habang (Tungro Disease) of rice in Indonesia. Phytopathology 68, 14121416.CrossRefGoogle Scholar
Hull, R. (1996). Molecular biology of rice tungro viruses. Annual Review of Phytopathology 34, 275297.Google Scholar
Hull, R., Geering, A., Harper, G., Lockhart, B. E. & Scholez, J. E. (2005). Family caulimoviridae. In Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Virus (Eds Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U. & Ball, L.), pp. 385396. London: Elsevier Academic Press.Google Scholar
IRRI (1996). Standard Evaluation System for Rice. Los Banos, The Philippines: IRRI.Google Scholar
Khush, G. S., Angeles, E., Virk, P. S. & Brar, D. S. (2004). Breeding rice for resistance to tungro virus at IRRI. SABRAO Journal of Breeding and Genetics 36, 101106.Google Scholar
Lennefors, B.-L., Savenkov, E. I., Bensefelt, J., Wremerth-Weich, E., Van Roggen, P., Tuvesson, S., Valkonen, J. P. T. & Gielen, J. (2006). dsRNA-mediated resistance to Beet necrotic yellow vein virus infections in sugar beet (Beta vulgaris L. ssp. vulgaris). Molecular Breeding 18, 313325.Google Scholar
Ma, J., Song, Y., Wu, B., Jiang, M., Li, K., Zhu, C. & Wen, F. (2011). Production of transgenic rice new germplasm with strong resistance against two isolations of Rice stripe virus by RNA interference. Transgenic Research DOI 10.1007/s11248-011-9502-1.Google Scholar
Matthews, P., Wang, M. B., Waterhouse, P. M., Thornton, S., Fieg, S. J., Gubler, F. & Jacobsen, J. V. (2001). Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Molecular Breeding 7, 195202.Google Scholar
Mazo, A., Hodgson, J. W., Petruk, S., Sedkov, Y. & Brock, H. W. (2007). Transcriptional interference: an unexpected layer of complexity in gene regulation. Journal of Cell Science 120, 27552761.Google Scholar
Mew, T. W., Leung, H., Savary, S., Cruz, C. M. V. & Leach, J. E. (2004). Looking ahead in rice disease research and management. Critical Reviews in Plant Sciences 23, 103127.Google Scholar
Muralidharan, K., Krishnaveni, D., Rajarajeswari, N. V. L. & Prasad, A. S. R. (2003). Tungro epidemics and yield losses in paddy fields in India. Current Science 85, 11431147.Google Scholar
Nath, N., Mathur, S. & Dasgupta, I. (2002). Molecular analysis of two complete rice tungro bacilliform virus genomic sequences from India. Archives of Virology 147, 11731187.Google Scholar
Ramesh, S. V., Mishra, A. K. & Praveen, S. (2007). Hairpin RNA mediated strategies for silencing of Tomato leaf curl virus AC1 and AC4 genes for effective resistance in plants. Oligonucleotides 17, 251257.Google Scholar
Shao, Q. M., Rush, M. C., Wu, M. C., Groth, D. E., Kang, M. S. & Linscombe, S. D. (2009). Transgene transfer to United States commercial rice cultivars via conventional breeding techniques. Journal of Crop Improvement 16, 4965.Google Scholar
Shen, P., Kaniewska, M., Smith, C. & Beachy, R. N. (1993). Nucleotide sequence and genomic organization of rice tungro spherical virus. Virology 193, 621630.Google Scholar
Sivamani, E., Huet, H., Shen, P., Ong, C. A., Dekochko, A., Fauquet, C. M. & Beachy, R. N. (1999). Rice plants (Oryza sativa L) containing Rice tungro spherical virus (RTSV) coat protein transgenes are resistant to virus infection. Molecular Breeding 5, 177185.Google Scholar
SPSS Inc. (2007). SPSS Base 16.0 for Windows User's Guide. Chicago, IL: SPSS Inc.Google Scholar
Tyagi, H., Rajasubramaniam, S., Rajam, M. V. & Dasgupta, I. (2008). RNA-interference in rice against Rice tungro bacilliform virus results in its decreased accumulation in inoculated rice plants. Transgenic Research 17, 897904.Google Scholar
Verma, V. & Dasgupta, I. (2007). Sequence analysis of the complete genomes of two Rice tungro spherical virus isolates from India. Archives of Virology 152, 645648.Google Scholar
Ward, J. H. Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of American Statistical Association 58, 236244.CrossRefGoogle Scholar
Supplementary material: File

Roy supplementary material

Roy supplementary material

Download Roy supplementary material(File)
File 197.1 KB