Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T15:34:56.409Z Has data issue: false hasContentIssue false

Studies on the estimation and decomposition of amino sugars in soil

Published online by Cambridge University Press:  27 March 2009

J. M. Bremner
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts
K. Shaw
Affiliation:
Rothamsted Experimental Station, Harpenden, Herts

Extract

1. The amounts of amino sugar-N present in acid hydrolysates of six soils with nitrogen contents ranging from 0·17 to 2·82% have been estimated by colorimetric and alkaline decomposition methods.

2. Recovery of amino sugar-N after hydrolysis of chitin or glucosamine was found to be unaffected by the presence of soil during hydrolysis.

3. Substances known to interfere with the methods of amino sugar analysis employed were not detectable in the soil hydrolysates.

4. From the amounts of amino sugar-N liberated by acid hydrolysis it is deduced that 5·10% of the total-nitrogen of the soils examined was in the form of amino sugars.

5. The decomposition of amino sugars in soil has been studied by comparing the rates of decomposition of chitin, glucosamine, casein and yeast nucleic acid when incubated with soil under conditions found to produce rapid nitrification of ammonium sulphate.

6. Glucosamine and chitin are readily decomposed by soil micro-organisms but not so rapidly as casein or yeast nucleic acid.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aminoff, D. & Morgan, W. T. J. (1948). Nature, Lond., 162, 579.CrossRefGoogle Scholar
Aminoff, D., Morgan, W. T. J. & Watkins, W. M. (1952). Biochem. J. 51, 379.CrossRefGoogle Scholar
Batham, H. N. (1927). Soil Sci. 24, 187.CrossRefGoogle Scholar
Bendich, A. & Chargaff, E. (1946). J. Biol. Chem. 166, 283.CrossRefGoogle Scholar
Blix, G. (1948). Acta chem. scand. 2, 467.CrossRefGoogle Scholar
Bremner, J. M. (1949). J. Agric. Sci. 39, 183.CrossRefGoogle Scholar
Bremner, J. M. (1950). Biochem. J. 47, 538.CrossRefGoogle Scholar
Bremner, J. M. (1951). J. Soil Sci. 2, 67.CrossRefGoogle Scholar
Consden, R., Gordon, A. H. & Martin, A. J. P. (1947). Biochem. J. 41, 590.CrossRefGoogle Scholar
Conway, E. J. (1947). Microdiffusion Analysis and Volumetric Error, 2nd ed.London: Crosby Lookwood.Google Scholar
Conway, E. J. & O'Malley, E. (1942). Biochem. J. 36, 655.CrossRefGoogle Scholar
Elson, L. A. & Morgan, W. T. J. (1933). Biochem. J. 27, 1824.CrossRefGoogle Scholar
Folkes, B. F., Grant, R. A. & Jones, J. K. N. (1950). J. Chem. Soc. p. 2136.Google Scholar
Gottschalk, A. & Partridge, S. M. (1950 a). Biochem. J. 46, vi.Google Scholar
Gottschalk, A. & Partridge, S. M. (1950 b). Nature, Lond., 165, 684.CrossRefGoogle Scholar
Horowitz, H. N., Ikawa, M. & Fling, M. (1950). Arch. Biochem. 25, 226.Google Scholar
Immers, J. & Vasseur, E. (1950). Nature, Lond., 165, 898.CrossRefGoogle Scholar
Immers, J. & Vasseur, E. (1952). Acta chem. scand. 6, 363.CrossRefGoogle Scholar
Johns, R. G. S. & Marrack, J. R. (1952). Biochem. J. 50, xvii.Google Scholar
Johnston, J. P., Ogston, A. G. & Stanier, J. E. (1951). Analyst, 76, 88.CrossRefGoogle Scholar
Kojima, R. T. (1947). Soil Sci. 64, 157.CrossRefGoogle Scholar
Lutwak-Mann, C. (1941). Biochem. J. 35, 610.CrossRefGoogle Scholar
Markham, R. (1942). Biochem. J. 36, 790.CrossRefGoogle Scholar
Mellan, I. (1941). Organic Reagents in Inorganic Analysis. Philadelphia: Blakiston.Google Scholar
Morgan, W. T. J. (1936). Biochem. J. 30, 909.CrossRefGoogle Scholar
Morgan, W. T. J. & Elson, L. A. (1934). Biochem. J. 28, 988.CrossRefGoogle Scholar
Müller, P. E. (1887). Studien über die naturlichen Humusformen. Berlin.Google Scholar
Ogston, A. G. & Stanier, J. E. (1950). Biochem. J. 46, 364.CrossRefGoogle Scholar
Owen, O., Winsor, G. W. & Long, M. I. E. (1950). Nature, Lond., 166, 152.CrossRefGoogle Scholar
Partridge, S. M. (1948). Biochem. J. 42, 238.CrossRefGoogle Scholar
Quastel, J. H. & Scholefield, P. G. (1949). Nature, Lond., 164, 1068.CrossRefGoogle Scholar
Ramaan, E. (1888). Landw. Jb. 17, 405.Google Scholar
Roller, E. M. & MoKaig, N. (1939). Soil Sci. 47, 397.CrossRefGoogle Scholar
Schollenberger, C. J. (1930). Soil Sci. 30, 307.CrossRefGoogle Scholar
Schloss, B. (1951). Anal. Chem, 23, 1321.CrossRefGoogle Scholar
Shinn, M. B. (1941). Industr. Engng Chem. (Anal, ed.), 13, 33.Google Scholar
Sideris, C. P., Young, H. Y. & Krauss, B. H. (1938). J. Biol. Chem. 126, 233.CrossRefGoogle Scholar
Smithies, W. R. (1952). Biochem. J. 51, 259.CrossRefGoogle Scholar
Smithies, W. R. (1953). Biochem. J. 53, xxix.Google Scholar
Tracey, M. V. (1951). Biochem. J. 49, xx.Google Scholar
Tracey, M. V. (1952). Biochem. J. 52, 265.CrossRefGoogle Scholar
Vasseur, E. & Immers, J. (1949). Arkiv Kemi, 1, 253.Google Scholar
Waksman, S. A. (1938). Humus, 2nd ed.London: Baillière, Tindall and Cox.Google Scholar
Yosizawa, Z. (1950). Tohoku J. exp. Med. 53, 125.CrossRefGoogle Scholar
Zuckerkandi, F. & Messiner-Klebermass, L. (1931). Biochem. Z. 236, 19.Google Scholar