Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T02:01:07.184Z Has data issue: false hasContentIssue false

Studies on carotene in relation to animal nutrition: Part II. The development and distribution of carotene in the plant and the carotene content of some common feeding stuffs

Published online by Cambridge University Press:  27 March 2009

P. A. Seshan
Affiliation:
Animal Nutrition Section, Imperial Veterinary Research Institute, Izatnagar, India
K. C. Sen
Affiliation:
Animal Nutrition Section, Imperial Veterinary Research Institute, Izatnagar, India

Extract

1. Under artificial conditions of plant growth, the relative development of carotene is very poor. The absence of sunlight appears to be the main cause.

2. Under field conditions, the maturity of a plant plays an active part in determining the carotene content, which gradually decreases with age. This phenomenon is less discernible among the legumes. The nitrogen content generally runs parallel to the carotene.

3. The species of the plant seems to be a determining factor in the capacity of the plant for carotene formation.

4. A study of the distribution of the carotene in different parts of the same plant shows that the leaves of grasses contain 3·1–11·0 times more carotene than the stems. The earheads and stems have almost equal amounts. With the growth of berseem and lucerne, the ratio of carotene in leaf to carotene in stem shows a tendency to increase, suggesting that the deterioration in the stem is comparatively more rapid than in the leaves when the plant becomes older.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1942

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnaud, (1889). Cited by Palmer, Carotenoids and Related Pigments (1922), p. 250.Google Scholar
Beck, W. A. (1937). Protoplasma, 28, 273; Plant Physiol. 12, 885.CrossRefGoogle Scholar
Coward, K. H. (1927). J. biol. Chem. 72, 781.CrossRefGoogle Scholar
Coward, K. H. & Drummond, J. C. (1921). Biochem. J. 15, 530.CrossRefGoogle Scholar
Endres, G., Huttel, R. & Kauffmann, L. (1939). Ann. Phys., Lpz., 537, 205.Google Scholar
Guilbert, H. R. (1935). J. Nutrit. 10, 45.CrossRefGoogle Scholar
Hauge, S. M. (1934). J. Ass. Off. agric. Chem. 17, 304.Google Scholar
Kon, S. K. & Thompson, S. Y. (1940). J. agric. Sci. 30, 622.CrossRefGoogle Scholar
Leonard, A. O. (1940). Ass. Southern Agric. Workers, Proc. Ann. Meeting, 41, 207.Google Scholar
Makhijani, J. K. & Banerji, B. N. (1938). Indian J. Vet. Sci. 8, 13.Google Scholar
Moon, F. E. (1939). Emp. J. Exp. Agric. 7, 225, 235.Google Scholar
Moore, T. (1927). Biochem. J. 21, 870.CrossRefGoogle Scholar
Murneek, A. E. (1934). Science, 79, 528.CrossRefGoogle Scholar
Quackenbush, F. W., Steenbock, H. & Peterson, W. H. (1938). J. Amer. chem. Soc. 60, 2937.CrossRefGoogle Scholar
Sherman, W. C. & Salmon, W. D. (1939). Food Res. 4, 371.CrossRefGoogle Scholar
Shivrina, A. N. (1937). Bull. Appl. Bot. Genet. Pl. Breed. 2, 235.Google Scholar
Sjoberg, K. (1931). Biochem. Z. 240, 156.Google Scholar
Smith, M. E. & Stanley, E. B. (1938). J. agric. Res. 56, 69.Google Scholar
Stanley, E. B. (1938). Tech. Bull. Ariz, agric. Exp. Sta. no. 79, p. 129.Google Scholar
Virtanen, A. I., Hansen, S. von & Saastamoinen, S. (1933). Biochem. Z. 257, 179.Google Scholar
Wall, R. (1940). Bull. Okla. agric. Exp, Sta. no. 242, p. 3.Google Scholar
Wilson, J. N. (1922). J. biol. Chem. 51, 455.CrossRefGoogle Scholar
Wiseman, H. G., Kane, E. A., Shinn, L. A. & Cary, C. A. (1938). J. agric. Res. 57, 635.Google Scholar