Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T05:30:24.040Z Has data issue: false hasContentIssue false

Studies on calcium and magnesium in the alimentary tract of sheep I. The distribution of calcium and magnesium in the contents taken from various parts of the alimentary tract

Published online by Cambridge University Press:  27 March 2009

J. E. Storry
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen

Extract

1. The distribution of calcium and magnesium in the contents of the reticulo-rumen sac, omasum, abomasum, small intestine, caecum and colon of the sheep was studied by means of ultrafiltration through collodion membranes.

2. In all organs except the abomasum considerable proportions of calcium and magnesium existed in a non-ultrafilterable form. In the abomasum where the pH is normally between 2 and 3 there was virtually no bound calcium or magnesium. The proportion of ultrafilterable calcium in the small intestine appeared to be dependent on the pH of the digesta, low pH values favouring higher proportions of ultrafilterable calcium. With magnesium this correlation was less obvious and appeared to be upset by unknown factors in the animals consuming a fresh grass diet.

3. From calculations it is postulated that the concentrations of ultrafilterable calcium and magnesium in rumen fluid are insufficient for these elements to be absorbed as freely diffusing ions, whereas in the abomasum and duodenum the concentrations of ultrafilterable calcium and magnesium are in favour of a net uptake from the gut.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1961

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annison, E. F. & Lewis, D. (1959). Metabolism in the Rumen, p. 138. London: Methuen and Co. Ltd.Google Scholar
Badawy, A. M., Campbell, R. M., Cuthbertson, D. P. & Fell, B. F. (1957). Nature, Lond., 180, 756.CrossRefGoogle Scholar
Carrol, K. K. & Richards, J. F. (1958). J. Nutr. 64, 441.Google Scholar
Dobson, A. (1956). Movements of ions across the epithelium of the reticulo-rumen sac. Ph.D. Thesis, University of Aberdeen.Google Scholar
Dobson, A. & Phillipson, A. T. (1958). J. Physiol. 140, 94.CrossRefGoogle Scholar
Duckworth, J. (1935). Biochem. J. 29, 656.CrossRefGoogle Scholar
Garner, R. J. (1949). Nature, Lond., 164, 458.CrossRefGoogle Scholar
Garton, G. A. (1951). J. Exp. Biol. 28, 358.CrossRefGoogle Scholar
Gershoff, S. N. & Hegsted, D. M. (1956). Amer. J. Physiol. 187, 203.CrossRefGoogle Scholar
Harrison, H. E. & Harrison, H. C. (1951). J. Biol. Chem. 188, 83.CrossRefGoogle Scholar
Hartman, L., Shorland, F. B. & Cleverley, B. (1958). Biochem. J. 69, 1.CrossRefGoogle Scholar
Hogan, J. P. & Phillipson, A. T. (1960). Brit. J Nutr. 14, 147.CrossRefGoogle Scholar
Holth, T. (1949). Analyt. Chem. 21, 1221.CrossRefGoogle Scholar
McCance, R. A., Widdowson, E. M. & Lehmann, H. (1942). Biochem. J. 36, 686.CrossRefGoogle Scholar
Nicolaysen, R. (1937). Biochem. J. 31, 323.CrossRefGoogle Scholar
Nicolaysen, R. (1951). Acta physiol. scand. 22, 260.CrossRefGoogle Scholar
Richards, J. F. & Carrol, K. K. (1959). Canad. J. Biochem. Physiol. 37, 725.CrossRefGoogle Scholar
Schacter, D., Dowdle, E. B. & Schenker, H. (1960 a). Amer. J. Physiol. 198, 263.CrossRefGoogle Scholar
Schacter, D., Dowdle, E. B. & Schenker, H. (1960 b). Amer. J. Physiol. 198, 275.CrossRefGoogle Scholar