Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T23:08:18.630Z Has data issue: false hasContentIssue false

Some genetic implications of maternal effects—an hypothesis of mammalian growth

Published online by Cambridge University Press:  27 March 2009

A. G. Dickinson
Affiliation:
A.R.C. Animal Breeding Research Organization, Edinburgh 9

Extract

In a cross-breeding experiment involving all types of matings among Friesian, Ayrshire and Jersey cattle, the effect of maternal size has been investigated, based on various comparisons of reciprocal crosses, using data on weight and body size from birth to 2 years of age. Among the thirteen characters analysed, there was a close relationship at I month old between the relative maturity of the characters and the relative extent of their maternal effects. This relationship showed that the more mature characters were the least affected by the maternal environment. Cross-bred calves out of a mother of the larger breed were larger at birth than the reciprocal crosses but in all cases this difference disappeared during the first year's growth.

The early expression of the offspring's genotype for body size depended on whether prenatal growth had been favoured or restricted by the maternal environment within limits. Maternal retardation of growth resulted in neonatal phenotypes closely related to their genetic ranking for mature body size, whereas early expression of the genotype is obscured by lavish prenatal conditions.

A mammalian growth model is presented and the results are interpreted in terms of this model. The explanation assumes that temporary advantage is taken, during growth, of variations in the environment, when the latter exceeds a minimal level demanded by the genotype for stable development to normal mature size. This supply and demand hypothesis of growth is discussed in terms of its implications for genetic selection of different types of body characters. The main conclusion is that an understanding of the early environment, particularly the maternal one, may permit selection for some adult characteristics to be carried out at an early age.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1960

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barcroit, J. (1946). Researches on Prenatal Life. Oxford: Blackwell.Google Scholar
Beatty, R. A. (1956). Nature, Lond., 178, 48.CrossRefGoogle Scholar
Blackmore, D. W., McGilliard, L. D. & Lush, J. L. (1958). J. Dairy Sci. 41, 1045.Google Scholar
Brody, S., Hogan, A. G., Kempster, H. L., Ragsdale, A. C. & Trowbridge, E. A. (1926). Res. Bull. Mo. Agric. Exp. Sta. no. 96.Google Scholar
Brumby, P. (1958). Ph.D. Thesis, Edinburgh University.Google Scholar
Calkins, L. A. (1937). Amer. J. Obstet. Gynec. 33, 280.CrossRefGoogle Scholar
Casida, L. E. (1956). Proc. IIIrd Inst. Congr. Anim. Reprod. no. 19.Google Scholar
Cawley, R. H., McKeown, T. & Record, R. G. (1954). Brit. J. Prev. Soc. Med. 8, 66.Google Scholar
Donald, H. P. & Purser, A. F. (1956). J. Agric. Sci. 48, 245.CrossRefGoogle Scholar
Falconer, D. S. & Latyszewski, M. (1952). J. Genet. 51, 67.CrossRefGoogle Scholar
Flade, J. E. (1957). Tierzucht, 11, 274.Google Scholar
Hammond, J. (1932). Growth and Development Mutton Qualities in the Sheep. Edinburgh: Oliver & Boyd.Google Scholar
Hammond, J. (1944). Proc. Nutr. Soc. 2, 8.Google Scholar
Hammond, J. (1947). Biol. Rev. 22, 195.CrossRefGoogle Scholar
Hansson, A., Brannang, E. & Claesson, O. (1953). Acta Agric. scand. 3, 61.CrossRefGoogle Scholar
Hansson, A. (1956). Proc. Brit. Soc. Anim. Prod. no. 51.Google Scholar
Hess, J. H., Mohr, G. J. & Bartelme, P. F. (1934). The Physical and Mental Growth of Prematurely Born Children. Chicago.CrossRefGoogle Scholar
Hilder, R. A. & Fohrman, M. H. (1949). J. Agric. Res. 78, 457.Google Scholar
Howe, P. E. (1939). U.S. Dep. Agric. Yearb. p. 469.Google Scholar
Huggett, A. St. G. & Hammond, J. (1952). Ch. 16, Marshall's Physiology of Reproduction, vol. 2, 3rd ed. (ed. Parkes, A. S.). London: Longmans Green.Google Scholar
Hunter, G. L. (1956). J. Agric. Sci. 48, 36.Google Scholar
Hunter, G. L., Adams, C. E. & Rowson, L. E. (1954). Nature, Lond., 174, 890.CrossRefGoogle Scholar
Joubert, D. M. & Hammond, J. (1954). Nature, Lond., 174, 647.CrossRefGoogle Scholar
Joubert, D. M. & Hammond, J. (1958). J. Agric. Sci. 51, 325.CrossRefGoogle Scholar
Karn, M. N. (1956). Ann. Hum. Genet. 21, 177.CrossRefGoogle Scholar
King, H. D. (1916). Anat. Rec. 11, 41.CrossRefGoogle Scholar
Krasnov, K. E. & Pak, D. N. (1937). Abstr. in Animal Breeding Abstracts, 7, 108.Google Scholar
Lowe, C. R. & Gibson, J. R. (1953). Brit. J. Prev. Soc. Med. 7, 78.Google Scholar
Matthews, C. A. & Fohrman, M. H. (1954). Tech. Bull. U.S. Dep. Agric. p. 1098.Google Scholar
McCay, C. M., Crowell, M. F. & Maynard, L. A. (1935). J. Nutr. 10, 63.Google Scholar
McHenry, E. W. (1954). Ch. 11, Hypophyseal Growth; Hormone Nature and Actions (ed. Smith, , Gaebler, and Long, ). N.Y.: McGraw-Hill.Google Scholar
McKenzie, F. F. & Bogart, R. (1934). Proc. Amer. Soc. Anim. Prod. no. 221.Google Scholar
McKeown, T. & Record, R. G. (1953). J. Endocrin. 10, 73.CrossRefGoogle Scholar
McKeown, T. & MacMahon, B. (1956). J. Endocrin. 13, 195.CrossRefGoogle Scholar
McKeown, T. & Record, R. G. (1954). Amer. J. Hum. Genet. 6, 457.Google Scholar
Miller, J. R. (1958). Proc. 10th Int. Congr. Genet. no. 190.Google Scholar
Morley, F. H. W. (1956). Aust. J. Agric. Res. 7, 140.Google Scholar
Paton, D. N. & Findlay, L. (1926). Spec. Rep. Ser. med. Res. Coun., Lond., no. 101.Google Scholar
Purser, A. F. & Roberts, C. (1959). Anim.Prod. 1, 189.Google Scholar
Putnam, N. & Henderson, H. O. (1944). J. Dairy Sci. 27, 661.CrossRefGoogle Scholar
Reynolds, S. B. M. (1949). Physiology of the Uterus, 2nd ed.New York: Hoeber.Google Scholar
Robb, R. C. (1929). Brit. J. Exp. Biol. 6, 293.Google Scholar
Rosahn, P. D. & Greene, H. S. N. (1936). J. Exp. Med. 63, 901.CrossRefGoogle Scholar
Runner, M. N. (1954). J. Nat. Cancer Inst. 15, 637.Google Scholar
Simpson, M. E., Asling, C. W. & Evans, H. M. (1950). Yale J. Biol. Med. 23, 1.Google Scholar
Tanner, J. M. & Burt, A. W. A. (1954). J. Genet. 52, 36.CrossRefGoogle Scholar
Venge, O. (1950). Acta zool. (Stockh.), 31, 148 pp.Google Scholar
Venge, O. (1953). Acta Agric. scand. 3, 243.Google Scholar
Wallace, L. R. (1948). J. Agric. Sd. 38, 93.CrossRefGoogle Scholar
Walton, A. & Hammond, J. (1938). Proc. Roy. Soc. B, 125, 311.Google Scholar