Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T08:56:13.285Z Has data issue: false hasContentIssue false

A semi-quantitative approach for modelling crop response to soil fertility: evaluation of the AquaCrop procedure

Published online by Cambridge University Press:  16 October 2014

H. VAN GAELEN*
Affiliation:
Department of Earth and Environmental Sciences, KU Leuven – University of Leuven, Celestijnenlaan 200 E, 3001 Leuven, Belgium
A. TSEGAY
Affiliation:
Department of Dryland Crop and Horticultural Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia
N. DELBECQUE
Affiliation:
Department of Earth and Environmental Sciences, KU Leuven – University of Leuven, Celestijnenlaan 200 E, 3001 Leuven, Belgium
N. SHRESTHA
Affiliation:
Department of Earth and Environmental Sciences, KU Leuven – University of Leuven, Celestijnenlaan 200 E, 3001 Leuven, Belgium
M. GARCIA
Affiliation:
Facultad de Agronomía, Universidad Mayor de San Andrés, La Paz, Bolivia
H. FAJARDO
Affiliation:
Facultad de Agronomía, Universidad Mayor de San Andrés, La Paz, Bolivia
R. MIRANDA
Affiliation:
Facultad de Agronomía, Universidad Mayor de San Andrés, La Paz, Bolivia
E. VANUYTRECHT
Affiliation:
Department of Earth and Environmental Sciences, KU Leuven – University of Leuven, Celestijnenlaan 200 E, 3001 Leuven, Belgium
B. ABRHA
Affiliation:
Department of Dryland Crop and Horticultural Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia
J. DIELS
Affiliation:
Department of Earth and Environmental Sciences, KU Leuven – University of Leuven, Celestijnenlaan 200 E, 3001 Leuven, Belgium
D. RAES
Affiliation:
Department of Earth and Environmental Sciences, KU Leuven – University of Leuven, Celestijnenlaan 200 E, 3001 Leuven, Belgium
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Most crop models make use of a nutrient-balance approach for modelling crop response to soil fertility. To counter the vast input data requirements that are typical of these models, the crop water productivity model AquaCrop adopts a semi-quantitative approach. Instead of providing nutrient levels, users of the model provide the soil fertility level as a model input. This level is expressed in terms of the expected impact on crop biomass production, which can be observed in the field or obtained from statistics of agricultural production. The present study is the first to describe extensively, and to calibrate and evaluate, the semi-quantitative approach of the AquaCrop model, which simulates the effect of soil fertility stress on crop production as a combination of slower canopy expansion, reduced maximum canopy cover, early decline in canopy cover and lower biomass water productivity. AquaCrop's fertility response algorithms are evaluated here against field experiments with tef (Eragrostis tef (Zucc.) Trotter) in Ethiopia, with maize (Zea mays L.) and wheat (Triticum aestivum L.) in Nepal, and with quinoa (Chenopodium quinoa Willd.) in Bolivia. It is demonstrated that AquaCrop is able to simulate the soil water content in the root zone, and the crop's canopy development, dry above-ground biomass development, final biomass and grain yield, under different soil fertility levels, for all four crops. Under combined soil water stress and soil fertility stress, the model predicts final grain yield with a relative root-mean-square error of only 11–13% for maize, wheat and quinoa, and 34% for tef. The present study shows that the semi-quantitative soil fertility approach of the AquaCrop model performs well and that the model can be applied, after case-specific calibration, to the simulation of crop production under different levels of soil fertility stress for various environmental conditions, without requiring detailed field observations on soil nutrient content.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abedinpour, M., Sarangi, A., Rajput, T. B. S., Singh, M., Pathak, H. & Ahmad, T. (2012). Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agricultural Water Management 110, 5566.Google Scholar
Abrha, B. (2013). Barley (Hordeum vulgare L.) yield prediction and its gap analysis in Geba catchment, northern highlands of Ethiopia. PhD Thesis, KU Leuven University, Leuven, Belgium.Google Scholar
Abrha, B., Delbecque, N., Raes, D., Tsegay, A., Todorovic, M., Heng, L., Vanuytrecht, E., Geerts, S., Garcia-Vila, M. & Deckers, S. (2012). Sowing strategies for barley (Hordeum vulgare L.) based on modelled yield response to water with AquaCrop. Experimental Agriculture 48, 252271.Google Scholar
Aggarwal, P. K. (1995). Uncertainties in crop, soil and weather inputs used in growth models: implications for simulated outputs and their applications. Agricultural Systems 48, 361384.Google Scholar
Albrizio, R. & Steduto, P. (2005). Resource use efficiency of field-grown sunflower, sorghum, wheat and chickpea: I. Radiation use efficiency. Agricultural and Forest Meteorology 130, 254268.Google Scholar
Andarzian, B., Bannayan, M., Steduto, P., Mazraeh, H., Barati, M. E., Barati, M. A. & Rahnama, A. (2011). Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management 100, 18.Google Scholar
Boogaard, H. L., De Wit, A. J. W., Te Roller, J. A. & Van Diepen, C. A. (2014). WOFOST Control Centre 2·1 and WOFOST 7·1·7: User's Guide for the WOFOST Control Centre 2·1 and WOFOST 7·1·7 Crop Growth Simulation Model. Wageningen, The Netherlands: Alterra.Google Scholar
Boote, K. J., Jones, J. W. & Pickering, N. B. (1996). Potential uses and limitations of crop models. Agronomy Journal 88, 704716.Google Scholar
Brisson, N., Ruget, F., Gate, P., Lorgeou, J., Nicoullaud, B., Tayot, X., Plenet, D., Jeuffroy, M.-H., Bouthier, A, Ripoche, D., Mary, B. & Justes, E. (2002). STICS: a generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize. Agronomie 22, 6992.Google Scholar
Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., Bertuzzi, P., Burger, P., Bussière, F., Cabidoche, Y. M., Cellier, P., Debaeke, P., Gaudillère, J. P., Hénault, C., Maraux, F., Seguin, B. & Sinoquet, H. (2003). An overview of the crop model STICS. European Journal of Agronomy 18, 309332.Google Scholar
Carberry, P. S., Probert, M. E., Dimes, J. P., Keating, B. A. & McCown, R. L. (2002). Role of modelling in improving nutrient efficiency in cropping systems. Plant and Soil 245, 193203.Google Scholar
Cusicanqui, J., Dillen, K., García, M., Geerts, S., Raes, D. & Mathijs, E. (2013). Economic assessment at farm level of the implementation of deficit irrigation for quinoa production in the Southern Bolivian Altiplano. Spanish Journal of Agricultural Research 11, 894907.Google Scholar
Delve, R. J., Probert, M. E., Cobo, J. G., Ricaurte, J., Rivera, M., Barrios, E. & Rao, I. M. (2009). Simulating phosphorus responses in annual crops using APSIM: model evaluation on contrasting soil types. Nutrient Cycling in Agroecosystems 84, 293306.Google Scholar
Eitzinger, J., Trnka, M., Hösch, J., Žalud, Z. & Dubrovský, M. (2004). Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions. Ecological Modelling 171, 223246.Google Scholar
Ethiopian Agricultural Research Organization (EARO) (2002). Crop Research Directorate: Research Recommendations for Improved Crop Production. Addis Ababa, Ethiopia: EARO.Google Scholar
Fang, Q., Ma, L., Yu, Q., Malone, R. W., Saseendran, S. A. & Ahuja, L. R. (2008). Modeling nitrogen and water management effects in a wheat-maize double-cropping system. Journal of Environment Quality 37, 22322242.Google Scholar
FAO (2005). New_LocClim: Local Climate Estimator. Environment and Natural Resources, Working paper No. 20 [CD-ROM]. Rome, Italy: FAO.Google Scholar
Fosu-Mensah, B. Y., MacCarthy, D. S., Vlek, P. L. G. & Safo, E. Y. (2012). Simulating impact of seasonal climatic variation on the response of maize (Zea mays L.) to inorganic fertilizer in sub-humid Ghana. Nutrient Cycling in Agroecosystems 94, 255271.CrossRefGoogle Scholar
Gabrielle, B., Roche, R., Angás Pueyo, P., Cantero-Martinez, C., Cosentino, L., Mantineo, M., Langensiepen, M., Hénault, C., Laville, P., Nicoullaud, B. & Gosse, G. (2002). A priori parameterisation of the CERES soil-crop models and tests against several European data sets. Agronomie 22, 119132.Google Scholar
García-Vila, M. & Fereres, E. (2012). Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. European Journal of Agronomy 36, 2131.CrossRefGoogle Scholar
García-Vila, M., Fereres, E., Mateos, L., Orgaz, F. & Steduto, P. (2009). Deficit irrigation optimization of cotton with AquaCrop. Agronomy Journal 101, 477487.CrossRefGoogle Scholar
Geerts, S. (2008). Deficit irrigation strategies via crop water productivity modelling: Field research of quinoa in the Bolivian Altiplano. PhD Thesis, KU Leuven University, Leuven, Belgium.Google Scholar
Geerts, S., Raes, D., Garcia, M., Vacher, J., Mamani, R., Mendoza, J., Huanca, R., Morales, B., Miranda, R., Cusicanqui, J. & Taboada, C. (2008). Introducing deficit irrigation to stabilize yields of quinoa (Chenopodium quinoa Willd.). European Journal of Agronomy 28, 427436.CrossRefGoogle Scholar
Geerts, S., Raes, D., Garcia, M., Miranda, R., Cusicanqui, J. A., Taboada, C., Mendoza, J., Huanca, R., Mamani, A., Condori, O., Mamanic, J., Moralesc, B., Oscob, V. & Stedutod, P. (2009). Simulating yield response of Quinoa to water availability with AquaCrop. Agronomy Journal 101, 499508.Google Scholar
Geerts, S., Raes, D. & Garcia, M. (2010). Using AquaCrop to derive deficit irrigation schedules. Agricultural Water Management 98, 213216.Google Scholar
Gijsman, A. J., Hoogenboom, G., Parton, W. J. & Kerridge, P. C. (2002). Modifying DSSAT crop models for low-input agricultural systems using a soil organic matter-residue module from CENTURY. Agronomy Journal 94, 462474.Google Scholar
Heng, L. K., Hsiao, T., Evett, S., Howell, T. & Steduto, P. (2009). Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agronomy Journal 101, 488498.Google Scholar
Hsiao, T. C., Heng, L., Steduto, P., Rojas-Lara, B., Raes, D. & Fereres, E. (2009). AquaCrop – the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal 101, 448459.Google Scholar
Jamieson, P. D., Porter, J. R. & Wilson, D. R. (1991). A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Research 27, 337350.CrossRefGoogle Scholar
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J. & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy 18, 235265.Google Scholar
Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., Huth, N. I., Hargreaves, J. N. G., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes, J. P., Silburn, M., Wang, E., Brown, S., Bristow, K. L., Asseng, S., Chapman, S., McCown, R. L., Freebairn, D. M. & Smith, C. J. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18, 267288.Google Scholar
Kinyangi, J., Delve, R. J. & Probert, M. E. (2004). Testing the APSIM model with data from a phosphorus and nitrogen replenishment experiment on an Oxisol in Western Kenya. In Modelling Nutrient Management in Tropical Cropping Systems (Eds Delve, R. J. & Probert, M. E.), pp. 101109. Canberra, Australia: Australian Centre for International Agricultural Research.Google Scholar
Loague, K. & Green, R. E. (1991). Statistical and graphical methods for evaluating solute transport models: Overview and application. Journal of Contaminant Hydrology 7, 5173.Google Scholar
Matthews, R. B. (2002). Crop management. In Crop-soil Simulation Models: Applications in Developing Countries (Eds Matthews, R. B. & Stephens, W.), pp. 2954. Wallingford, UK: CAB International.Google Scholar
Micheni, A. N., Kihanda, F. M., Warren, G. P. & Probert, M. E. (2004). Testing the APSIM model with experimental data from the long-term manure experiment at Machang'a (Embu), Kenya. In Modelling Nutrient Management in Tropical Cropping Systems (Eds Delve, R. J. & Probert, M. E.), pp. 110117. Canberra, Australia: Australian Centre for International Agricultural Research.Google Scholar
Ministry Of Agriculture and Co-Operatives (MOAC) (2010). Nepal Agriculture Diary. Sighadarbar, Kathmandu, Nepal: Government of Nepal.Google Scholar
Miranda, R., Mendoza, H. & Yucra, E. (2012). Abonamiento orgánico y riego suplementario en el cultivo de quinua. Revista Suelos Ecuatoriales 42, 173180.Google Scholar
Myers, R. J. K. (2005). Helping small-scale farmers in the semi-arid tropics: Linking participatory research, traditional research and simulation modelling. In Nutrient and Water Management Practices for Increasing Crop Production in Rainfed Arid/Semi-Arid Areas – Proceedings of a Coordinated Research Project, pp. 127137. IAEA-TECDOC 1468. Vienna, Austria: International Atomic Energy Agency (IAEA).Google Scholar
Probert, M. E. (2004). A capability in APSIM to model phosphorus responses in crops. In Modelling Nutrient Management in Tropical Cropping Systems (Eds Delve, R. J. & Probert, M. E.), pp. 92100. Canberra, Australia: Australian Centre for International Agricultural Research.Google Scholar
Probert, M. E. & Dimes, J. P. (2004). Modelling release of nutrients from organic resources using APSIM. In Modelling Nutrient Management in Tropical Cropping Systems (Eds Delve, R. J. & Probert, M. E.), pp. 2531. Canberra, Australia: Australian Centre for International Agricultural Research.Google Scholar
Probert, M. E. & Keating, B. A. (2000). What soil constraints should be included in crop and forest models? Agriculture, Ecosystems and Environment 82, 273281.Google Scholar
Raes, D., Steduto, P., Hsiao, T. C. & Fereres, E. (2009). AquaCrop – the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal 101, 438447.CrossRefGoogle Scholar
Raes, D., Steduto, P., Hsiao, T. C. & Fereres, E. (2012). AquaCrop Reference Manual, AquaCrop version 4.0. Rome, Italy: FAO.Google Scholar
Shrestha, N., Raes, D., Vanuytrecht, E. & Sah, S. K. (2013). Cereal yield stabilization in Terai (Nepal) by water and soil fertility management modeling. Agricultural Water Management 122, 5362.Google Scholar
Steduto, P. & Albrizio, R. (2005). Resource use efficiency of field-grown sunflower, sorghum, wheat and chickpea: II. Water use efficiency and comparison with radiation use efficiency. Agricultural and Forest Meteorology 130, 269281.Google Scholar
Steduto, P., Hsiao, T. C., Raes, D. & Fereres, E. (2009). AquaCrop: The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal 101, 426437.Google Scholar
Stöckle, C. O., Donatelli, M. & Nelson, R. (2003). CropSyst, a cropping systems simulation model. European Journal of Agronomy 18, 289307.CrossRefGoogle Scholar
Stricevic, R., Cosic, M., Djurovic, N., Pejic, B. & Maksimovic, L. (2011). Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower. Agricultural Water Management 98, 16151621.CrossRefGoogle Scholar
Tsegay, A., Raes, D., Geerts, S., Vanuytrecht, E., Abraha, B., Deckers, J., Bauer, H. & Gebrehiwot, K. (2012). Unravelling crop water productivity of tef (Eragrostis Tef (Zucc.) Trotter) through AquaCrop in northern Ethiopia. Experimental Agriculture 48, 222237.Google Scholar
Tubiello, F. N. & Ewert, F. (2002). Simulating the effects of elevated CO2 on crops: approaches and applications for climate change. European Journal of Agronomy 18, 5774.Google Scholar
Van Gaelen, H., Raes, D. & Diels, J. (2014). A model based approach towards environment-specific field management strategies for upgrading crop water productivity. In Communications in Agricultural and Applied Biological Sciences, Vol. 79, pp. 1520. 19th National Symposium on Applied Biological Sciences (NSABS2014), Gembloux Agro-Bio Tech (Liège University), Liège, Belgium.Google Scholar
Vanuytrecht, E., Raes, D. & Willems, P. (2011). Considering sink strength to model crop production under elevated atmospheric CO2 . Agricultural and Forest Meteorology 151, 17531762.Google Scholar
Walburg, G., Bauer, M. E. & Daughtry, C. S. T. (1981). Effects of Nitrogen nutrition on the growth, yield and reflectance characteristics of corn canopies. LARS Technical Report No. 22. Indiana, USA: Purdue University.Google Scholar
Whitbread, A. M., Robertson, M. J., Carberry, P. S. & Dimes, J. P. (2010). How farming systems simulation can aid the development of more sustainable smallholder farming systems in southern Africa. European Journal of Agronomy 32, 5158.Google Scholar