Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T02:38:20.423Z Has data issue: false hasContentIssue false

The seminiferous epithelial cycle and spermatogenesis in goats (Capra hircus)

Published online by Cambridge University Press:  27 March 2009

G. S. Bilaspuri
Affiliation:
Department of Zoology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana-141004:, Punjab, India
S. S. Guraya
Affiliation:
Department of Zoology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana-141004:, Punjab, India

Summary

The development of the acrosomic system and the spermatid nucleus were used to define 14 stages of the seminiferous epithelial cycle in goats; these stages provided a basis for the examination of the behaviour of different spermatogenic cells which gave an idea of the efficiency of spermatogenesis. Eighteen steps of acrosome development (spermiogenesis) were observed in testicular material stained with periodic acid-Schiff. The first 14 steps were used to classify SEC into 14 (I–XIV) stages which in turn were employed to study the pattern of differentiation of spermatogenic cells by counting them in each stage of the cycle. Three generations of type A (A1, A2, A3), one generation of type intermediate (In) and two generations of type B (B1, B2) spermatogonia could be distinguished. A1 spermatogonia divided primarily in stages IX–X to produce A2 spermatogonia which in turn divided in stages XII–XIII to produce A3 spermatogonia and A, spermatogonia. A3 spermatogonia divided in stage XIV to produce In spermatogonia whereas A1 spermatogonia did not divide till the next cycle but underwent 26·3 % degeneration. In spermatogonia divided to form B1 spermatogonia in stages III–V which further divided to produce B2 spermatogonia in stage VI. Types A3, In and B2 spermatogonia showed 15·0, 25·0 and 25·8% degeneration respectively. B2 spermatogonia divided in stages VII–VIII to produce double the number of primary spermatocytes which persisted without any degeneration till stage XIII of the following cycle and divided at the beginning of stage XIV to form double the number of secondary spermatocytes. These cells divided at the end of stage XIV to form less than double the number of young round spermatids, showing 10·4% degeneration. It is concluded that the development of the acrosomic system as well as the spermatid nucleus could be conveniently used to study the behaviour of spermatogenic cells and that the process of spermatogenesis was less efficient than thought previously.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abercrombie, M. (1946). Estimation of nuclear population from microtome sections. Anatomical Record 94, 238248.CrossRefGoogle ScholarPubMed
Amann, R. P. (1962). Reproductive capacity of dairy bulls. IV. Spermatogenesis and testicular germ cell degeneration. American Journal of Anatomy 110, 6978.CrossRefGoogle ScholarPubMed
Amann, R. P. & Almquist, J. O. (1962). Reproductive capacity of dairy bulls. VI. Effect of unilateral vasecfcomy and ejaculation frequency on sperm reserves; aspects of epididymal physiology. Journal of Reproduction and Fertility 3, 260268.CrossRefGoogle ScholarPubMed
Attal, J. & Courot, M. (1963). Développement testiculaire et établissement de la spermatogenèse chez le taureau. Annales de Biologie animate, Biochimie, Biophysique 3, 219241.CrossRefGoogle Scholar
Barr, A. B. (1973). Timing of spermatogenesis in four non-human primate species. Fertility and Sterility 24, 381389.CrossRefGoogle Scholar
Berndtson, W. E. & Desjardins, C. (1974). The cycle of seminiferous epithelium and spermatogenesis in the bovine testis. American Journal of Anatomy 140, 167180.CrossRefGoogle Scholar
Bilaspuri, G. S. & Guraya, S. S. (1980). Quantitative studies on spermatogenesis in buffalo (Bubalus bubalis). Reproduction, Nutrition, Développement 20, 975982.CrossRefGoogle ScholarPubMed
Bilaspuri, G. S. & Guraya, S. S. (1983). Histochemical localization of glycolytic enzymes, alcohol and secondary-alcohol dehydrogenases in the tostes of buffaloes, goats and rams. Journal of Agricultural Science, Cambridge 101, 457462.CrossRefGoogle Scholar
Bilaspuri, G. S. & Guraya, S. S. (1984). Histochemical localization of enzymes of various metabolic pathways in the testes of buffaloes, goats and rams. Journal of Agricultural Science, Cambridge 102, 269274.CrossRefGoogle Scholar
Chowdhury, A. K. & Steinberger, E. (1976). A study of germ cell morphology and duration of spermatogenic cycle in the baboon Papio anubis. Anatomical Record 185, 155170.CrossRefGoogle ScholarPubMed
Clermont, Y. (1954). Cycle de l'épithélium séminal et mode de renouvellement des spermatogonies chez le hamster. Revue Canadienne de Biologie 3, 208245.Google Scholar
Clermont, Y. (1960). Cycle of the seminiferous epithelium of the guinea pig. A method for identification of the stages. Fertility and Sterility 11, 563573.CrossRefGoogle ScholarPubMed
Clermont, Y. (1962). Quantitative analysis of spermatogenesis of the rat: a revised model for the renewal of spermatogonia. American Journal of Anatomy 111, 111129.CrossRefGoogle Scholar
Clermont, Y. (1963). The cycle of the seminiferous epithelium in man. American Journal of Anatomy 112, 3551.CrossRefGoogle ScholarPubMed
Clermont, Y. (1972). Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiological Reviews 52, 198236.CrossRefGoogle ScholarPubMed
Clermont, Y. & Antar, M. (1973). Duration of the cycle of the seminiferous epithelium and the spermatogonial renewal in the monkey Macaca aractoides. American Journal of Anatomy 136, 15311566.CrossRefGoogle Scholar
Clermont, Y. & Leblond, C. P. (1955). Spermiogenesis of man, monkey, ram and other mammals as shown by the periodic acid-Schiff's technique. American Journal of Anatomy 96, 229253.CrossRefGoogle Scholar
Clermont, Y. & Leblond, C. P. (1959). Differentiation and renewal of spermatogonia in the monkey Macaca rhesus. American Journal of Anatomy 104, 237272.CrossRefGoogle Scholar
Clermont, Y. & Morgentaler, H. (1955). Quantitative study of spermatogenesis in the hypophysectomized rat. Endocrinology 57, 369382.CrossRefGoogle ScholarPubMed
Clermont, Y. & Perey, B. (1957). The stages of the cycle of the seminiferous epithelium of the rat: practical definitions in PA-Schiff–haematoxylin and haematoxylin–eosin stained sections. Revue Canadienne de Biologie 16, 451462.Google Scholar
Courot, M., Hochereau-De-Reviers, M. T. & Ortavant, R. (1970). Spermatogenesis. In The Testis vol. I. (ed. Johnson, A. D., Gomes, W. R. and Demark, N. L. Van), pp. 339432. New York: Academic Press.Google Scholar
De Rooij, D. G. (1970). Some observations on the A0 spermatogonia of the mouse. In Morphological Aspects of Andrology (ed. Holstein, A. F. and Horstmann, E.), pp. 1316. Berlin: Grosse Verlag.Google Scholar
Desjardins, C. (1972). Spermiogenesis and the cycle of the epithelium in the rabbit. Anatomical Record 172, 301302.Google Scholar
Foote, R. H., Swierstra, E. E. & Hunt, W. L. (1972). Spermatogenesis in the dog. Anatomical Record 173, 341352.CrossRefGoogle ScholarPubMed
Guraya, S. S. & Bilaspuri, G. S. (1976a). Stages of seminiferous epithelial cycle and relative duration of spermatogenic processes in buffalo. Gegenbaurs Morphologisches Jahrbuch Leipzig 122, 147161.Google ScholarPubMed
Guraya, S. S. & Bilaspuri, G. S. (1976 b). Stages of seminiferous epithelial cycle in the buffalo. Annales de Biologie animale, Biochimie, Biophysique 16, 137144.CrossRefGoogle Scholar
Guraya, S. S. & Bilaspuri, G. S. (1976 c). Spermatogenic cells of the buffalo (Bubalus bubalis) testis. Indian Journal of Animal Sciences 46, 368375.Google ScholarPubMed
Hochereau, M. T. (1963). Constance des fréquency relatives des stades du cycle de l'épithélium séraini-fère chez le taureau et chez le rat. Annales de Biologie animale, Biochimie, Biophysique 3, 93102.CrossRefGoogle Scholar
Hochereau-De-Reviers, M. T. (1970). Etudes des divisions spermatogoniales et du renouvellement de la spermatogonie souche chez le taureau. D.Sc. thesis, University of Paris, Paris.Google Scholar
Humason, G. L. (1967). Animal Tissue Techniques. San Francisco: W. H. Freeman and Company.Google Scholar
Leblond, C. P. & Clermont, Y. (1952). Definition of the stages of the cycle of the seminiferous epithelium in the rat. Annals of the New York Academy of Sciences 55, 548573.CrossRefGoogle ScholarPubMed
Leblond, C. P., Clermont, Y. & Nadler, N. J. (1968). The pattern of stem cell renewal in three epithelia (oesophagus, intestine and testis). Canadian Cancer Research Conference 7, 330.Google Scholar
Oakberg, E. F. (1955). Sensitivity and time of degeneration of spermatogenetic cells irradiated in various stages of maturation in the mouse. Radiation Research 2, 369391.CrossRefGoogle Scholar
Oakberg, E. F. (1956). A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium. American Journal of Anatomy 99, 391414.CrossRefGoogle ScholarPubMed
Ortavant, R. (1958). Le cycle spermatogénétique chez le Bélier. D.Sc. thesis, University of Paris, Paris.Google Scholar
Ortavant, R. (1959). Spermatogenesis and morphology of the spermatozoon. In Reproduction in Domestic Animals, Vol. 2 (ed. Cole, H. H. and Cupps, P. T.), pp. 150. New York: Academic Press.Google Scholar
Oud, J. L. & De Rooij, D. G. (1977). Spermatogenesis in the Chinese hamster. Anatomical Record 187, 113124.CrossRefGoogle ScholarPubMed
Roosen-Runge, E. C. & Giesel, L. O. (1950). Quantitative studies on spermatogenesis in the albino rat. American Journal of Anatomy 87, 130.CrossRefGoogle ScholarPubMed
Schuler, H. M. & Gier, M. T. (1976). Duration of the cycle of seminiferous epithelium in the prairie vole (Microtus ochrogaster ochrogasler). Journal of Experimental Zoology 197, 112.CrossRefGoogle Scholar
Steinberger, E. (1971). Hormonal control of mammalian spermatogenesis. Physiological Reviews 51, 122.CrossRefGoogle ScholarPubMed
Swierstra, E. E. (1966). Structural composition of short-horn bull testes and daily spermatozoa production as determined by quantitative testicular histology. Canadian Journal of Animal Sciences 46, 107119.CrossRefGoogle Scholar
Swierstra, E. E. (1968). Cytology and duration of the cycle of the seminiferous epithelium of the boar: duration of spermatozoan transit through the epididymis. Anatomical Record 161, 171186.CrossRefGoogle ScholarPubMed
Swierstra, E. E. & Foote, R. H. (1963). Cytology and kinetics of spermatogenesis in the rabbit. Journal of Reproduction and Fertility 5, 309322.CrossRefGoogle ScholarPubMed
Swierstra, E. E., Greabuer, M. R. & Pickett, B. W. (1974). Reproductive physiology of the stallion. I. Spermatogenesis and testis composition. Journal of Reproduction and Fertility 40, 113123.CrossRefGoogle ScholarPubMed
Swierstra, E. E., Whitefield, J. W. & Foote, R. H. (1964). Action of amphotericin B (fungizone) on spermatogenesis in the rabbit. Journal of Reproduction and Fertility 7, 1319.CrossRefGoogle ScholarPubMed
Tiba, T., Ishikawa, T. & Murakomt, A. (1968). Histologische Untersuchung der Kinetik der spermatogenese beim Mink (Mustelavison). I. Samenepithelzyklus in der Paarungszeit. Japanese Journal of Veterinary Research 16, 7387.Google Scholar
Weaker, F. J. (1977). Spermatogonia and the cycle of the seminiferous epithelium in the nine-banded armadillo. Cell and Tissue Research 179, 97109.CrossRefGoogle ScholarPubMed