Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T19:18:39.176Z Has data issue: false hasContentIssue false

Searching for the missing nitrogen: biogenic nitrogen gases in groundwater and streams

Published online by Cambridge University Press:  13 March 2014

R. J. FOX*
Affiliation:
Horn Point Laboratory, Center for Environmental Science, University of Maryland, Cambridge, MD 21613, USA
T. R. FISHER
Affiliation:
Horn Point Laboratory, Center for Environmental Science, University of Maryland, Cambridge, MD 21613, USA
A. B. GUSTAFSON
Affiliation:
Horn Point Laboratory, Center for Environmental Science, University of Maryland, Cambridge, MD 21613, USA
T. E. JORDAN
Affiliation:
Smithsonian Environmental Research Center, PO Box 28, Edgewater, MD 21037, USA
T. M. KANA
Affiliation:
Horn Point Laboratory, Center for Environmental Science, University of Maryland, Cambridge, MD 21613, USA
M. W. LANG
Affiliation:
USDA-Forest Service Northern Research Station, Beltsville, Maryland 20705, USA
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Biogenic nitrogen (N2) and nitrous oxide (N2O) accumulations were measured in groundwater, streams and the vadose zone of small agricultural watersheds in the Mid-Atlantic USA. In general, N2 and N2O in excess of atmospheric equilibrium were found in groundwater virtually everywhere that was sampled. Excess N2 in groundwater ranged from undetectable to 616 μmol N2-N/l, the latter representing c. 50% of background N2. The N2O-N concentrations varied from undetectable to 75 μm, and usually greatly exceeded values at atmospheric equilibrium (25–30 nM); however, N2O was generally 1–10% of excess N2. Intermediate levels of deficit and excess N2 in flowing streams (−65 to +250 μmol N2-N/L) resulting from both abiotic and biotic processes were also measured. In vadose zone gases, multiple N2/Ar gas profiles were measured which exhibited seasonal variations with below atmospheric values when the soil was warming in spring/summer and above atmospheric values when groundwater was cooling in fall/winter. Both abiotic and biotic processes contributed to the excess N2 and N2O that was observed. The current data indicate that large concentrations of excess N gases can accumulate within soil, groundwater, and streams of agriculturally dominated watersheds. When excess N gases are exchanged with the atmosphere, the net fluxes to the atmosphere may represent an important loss term for watershed N budgets.

Type
Nitrogen Workshop Special Issue Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aeschbach-Hertig, W., Peeters, F., Beyerle, U. & Kipfer, R. (1999). Interpretation of dissolved atmospheric noble gases in natural water. Water Resources Research 35, 27792792.Google Scholar
Aeschbach-Hertig, W., El-Gamal, H., Wieser, M., & Palcsu, L. (2008). Modeling excess air and degassing in groundwater by equilibrium partitioning with a gas phase. Water Resources Research 44, W08449, DOI:10.1029/2007WR006454.Google Scholar
Beaulieu, J. J., Tank, J. L., Hamilton, S. K., Wollheim, W. M., Hall, R. O. Jr, Mulholland, P. J., Peterson, B. J., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Dodds, W. K., Grimm, N. B., Johnson, S. L., McDowell, M. W., Poole, G. C., Valett, H. M., Arango, C. P., Bernot, M. J., Burgin, A. J., Crenshaw, C. L., Helton, A. M., Johnson, L. T., O'Brien, J. M., Potter, J. D., Sheibley, R. W., Sobota, D. J. & Thomas, S. M. (2011). Nitrous oxide emission from denitrification in stream and river networks. Proceedings of the National Academy of Sciences USA 108, 214219.CrossRefGoogle ScholarPubMed
Benitez, J. A. & Fisher, T. R. (2004). Historical land cover conversion (1665–1850) in the Choptank watershed, Eastern USA. Ecosystems 7, 219232.Google Scholar
Bohlke, J.-K. & Denver, J. M. (1995). Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resources Research 31, 23192339.Google Scholar
Boyer, E. W., Goodale, C. L., Jaworski, N. A. & Howarth, R. W. (2002). Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biogeochemistry 57/58, 137169.Google Scholar
Burgin, A. J. & Hamilton, S. K. (2007). Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology & the Environment 5, 8996.Google Scholar
Colt, J. (1984). Computation of Dissolved Gas Concentrations in Water as Functions of Temperature, Salinity, and Pressure. Special Publication no. 14. Bethesda, MD, USA: American Fisheries Society.Google Scholar
David, M. B. & Gentry, L. E. (2000). Anthropogenic inputs of nitrogen and phosphorus and riverine export for Illinois, USA. Journal of Environmental Quality 29, 494508.Google Scholar
Denver, J. M., Ator, S. W., Lang, M. W., Fisher, T. R., Gustafson, A. B., Fox, R., Clune, J. W. & McCarty, G. W. (2014). Nitrate fate and transport through current and former depressional wetlands in an agricultural landscape, Choptank Watershed, Maryland, USA. Journal of Soil and Water Conservation 69, 527542.Google Scholar
Falkengren-Grerup, U. (1995). Interspecies differences in the preference of ammonium and nitrate in vascular plants. Oecologia 102, 305311.Google Scholar
Fisher, T. R., Hagy, J. D. III, Boynton, W. R. & Williams, M. R. (2006). Cultural eutrophication in the Choptank and Patuxent estuaries of Chesapeake Bay. Limnology and Oceanography 51, 435447.Google Scholar
Fisher, T. R., Jordan, T. E., Staver, K. W., Gustafson, A. B., Koskelo, A. I., Fox, R. J., Sutton, A. J., Kana, T., Beckert, K. A., Stone, J. P., McCarty, G. & Lang, M. (2010). The Choptank Basin in transition: intensifying agriculture, slow urbanization, and estuarine eutrophication. In Coastal Lagoons: Systems of Natural and Anthropogenic Change (Eds Kennish, M. J. & Paerl, H. W.), pp. 135166. New York: CRC Press.Google Scholar
Fox, R. J. (2011). Dynamics of metabolic gases in groundwater and the vadose zone of soils on Delmarva. PhD Thesis, University of Maryland, College Park, MD, USA.Google Scholar
Glass, A. D. M., Britto, D. T., Kaiser, B. N., Kinghorn, J. R., Kronzucker, H. J., Kumar, A., Okamoto, M., Rawat, S., Siddiqi, M. Y., Unkles, S. E. & Vidmar, J. J. (2002). The regulation of nitrate and ammonium transport systems in plants. Journal of Experimental Botany 53, 855864.Google Scholar
Green, C. T., Fisher, L. H. & Bekins, B. A. (2008). Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States. Journal of Environmental Quality 37, 10731085.Google Scholar
Groffman, P. M., Gold, A. J. & Addy, K. (2000). Nitrous oxide production in riparian zones and its importance to national emission inventories. Chemosphere – Global Change Science 2, 291299.Google Scholar
Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., Downing, J. A., Elmgren, R., Caraco, N., Jordan, T., Berendse, F., Freney, J., Kudeyarov, V., Murdoch, P. & Zhao-Liang, Z. (1996). Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35, 75139.Google Scholar
Ingram, R. G. S., Hiscock, K. M. & Dennis, P. F. (2007). Noble gas excess air applied to distinguish groundwater recharge conditions. Environmental Science and Technology 41, 19491955.Google Scholar
Jordan, T. E. & Weller, D. W. (1996). Human contributions to terrestrial nitrogen flux. BioScience 46, 655664.Google Scholar
Jordan, T. E., Correll, D. L. & Weller, D. E. (1997). Effects of agriculture on discharges of nutrients from coastal plain watersheds of Chesapeake Bay. Journal of Environmental Quality 26, 836848.Google Scholar
Kana, T. M., Darkangelo, C., Hunt, M. D., Oldham, J. B., Bennett, G. E. & Cornwell, J. C. (1994). A membrane inlet mass spectrometer for rapid high precision determination of N2, O2, and Ar in environmental water samples. Analytical Chemistry 66, 41664170.CrossRefGoogle Scholar
Langford, A. O., Fehsenfeld, F. C., Zachariassen, J. & Schimel, D. S. (1992). Gaseous ammonia fluxes and background concentrations in terrestrial ecosystems of the United States. Global Biogeochemical Cycles 6, 459483.Google Scholar
Laursen, A. E. & Seitzinger, S. P. (2004). Diurnal patterns of denitrification, oxygen consumption, and nitrous oxide production in rivers measured at the whole-reach scale. Freshwater Biology 49, 14481458.Google Scholar
Lee, K.-Y., Fisher, T. R. & Rochelle-Newall, E. (2001). Modeling the hydrochemistry of the Choptank River basin using GWLF and Arc/Info: 2. Model Application. Biogeochemistry 56, 311348.Google Scholar
McCutchan, J. H. Jr, Saunders, J. F. III, Pribyl, A. L. & Lewis, W. M. Jr. (2003). Open-channel estimation of denitrification. Limnology and Oceanography: Methods 1, 7481.Google Scholar
Mehnert, E., Hwang, H.-H., Johnson, T. M., Sanford, R. A., Beaumont, W. C. & Holm, T. R. (2007). Denitrification in the shallow ground water of a tile-drained, agricultural watershed. Journal of Environmental Quality 36, 8090.Google Scholar
Norton, M. M. & Fisher, T. R. (2000). The effects of forest on stream water quality in two coastal plain watersheds of the Chesapeake Bay. Ecological Engineering 14, 337362.Google Scholar
Pessarakli, M. (1999). Handbook of Plant and Crop Stress, 2nd edn. New York: Marcel Dekker Inc.Google Scholar
Schaefer, S. C. & Alber, M. (2007). Temperature controls a latitudinal gradient in the proportion of watershed nitrogen exported to coastal ecosystems. Biogeochemistry 85, 333346.Google Scholar
Schaefer, S. C., Hollibaugh, J. T. & Alber, M. (2009). Watershed nitrogen input and riverine export on the west coast of the US. Biogeochemistry 93, 219233.Google Scholar
Seitzinger, S., Harrison, J. A., Bohlke, J.-K., Bouwman, A. F., Lowrance, R., Peterson, B., Tobias, C. & Van Drecht, G. (2006). Denitrification across landscapes and waterscapes: a synthesis. Ecological Applications 16, 20642090.Google Scholar
Silver, W. L., Lugo, A. E. & Keller, M. (1999). Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44, 301328.Google Scholar
Sutton, A. J., Fisher, T. R. & Gustafson, A. B. (2010). Effects of restored stream buffers on water quality in non-tidal streams in the Choptank River basin. Water, Air and Soil Pollution 208, 101118.Google Scholar
van Breemen, N., Boyer, E. W., Goodale, C. L., Jaworski, N. A., Paustian, K., Seitzinger, S. P., Lajtha, K., Mayer, B., Van Dam, D., Howarth, R. W., Nadelhoffer, K. J., Eve, M. & Billen, G. (2002). Where did all the nitrogen go? Fate of nitrogen inputs to large watershed in the northeastern U.S.A. Biogeochemistry 57/58, 267293.Google Scholar
Vilain, G., Garnier, J., Tallec, G. & Tournebize, J. (2012). Indirect N2O emissions from shallow groundwater in an agricultural catchment (Seine Basin, France). Biogeochemistry 111, 253271.Google Scholar
Vogel, J. C., Talma, A. S. & Heaton, T. H. E. (1981). Gaseous nitrogen as evidence of denitrification in groundwater. Journal of Hydrology 50, 191200.Google Scholar
Wilson, G. B. & McNeill, G. W. (1997). Noble gas recharge temperatures and the excess air component. Applied Geochemistry 12, 747762.Google Scholar
Yang, W. H. & Silver, W. H. (2012). Application of the N2/Ar technique to measuring soil-atmosphere N2 fluxes. Rapid Communications in Mass Spectrometry 26, 449459.Google Scholar
Zumft, W. G. (1997). Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews 61, 533616.Google Scholar