Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T06:39:13.907Z Has data issue: false hasContentIssue false

Rumen phosphorus metabolism in sheep

Published online by Cambridge University Press:  09 April 2009

R. S. DIAS
Affiliation:
Centre for Nutrition Modelling, Department of Animal and Poultry Science, University of Guelph, Guelph, ONN1G 2W1, Canada Animal Nutrition Laboratory, Centro de Energia Nuclear na Agricultura, Caixa Postal 96, CEP 13400-970, Piracicaba, SP, Brazil
S. LOPEZ*
Affiliation:
Instituto de Ganadería de Montaña (IGM), Universidad de León – Consejo Superior de Investigaciones Científicas (CSIC), Departamento de Producción Animal, Universidad de León, E-24071, León, Spain
T. SILVA
Affiliation:
Animal Nutrition Laboratory, Centro de Energia Nuclear na Agricultura, Caixa Postal 96, CEP 13400-970, Piracicaba, SP, Brazil
R. M. P. PARDO
Affiliation:
Facultad de Ciencias Agropecuarias, University of Sucre, Carrera 28 5-267, Sincelejo, Sucre, Colombia
J. C. SILVA FILHO
Affiliation:
Animal Research Laboratory, Federal University of Lavras, CEP 37200-000, Lavras, MG, Brazil
D. M. S. S. VITTI
Affiliation:
Animal Nutrition Laboratory, Centro de Energia Nuclear na Agricultura, Caixa Postal 96, CEP 13400-970, Piracicaba, SP, Brazil
E. KEBREAB
Affiliation:
Department of Animal Science, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
J. FRANCE
Affiliation:
Centre for Nutrition Modelling, Department of Animal and Poultry Science, University of Guelph, Guelph, ONN1G 2W1, Canada
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The objective of the present study was to examine the effect of the level of phosphorus (P) intake on ruminal P kinetics in sheep. Twelve Santa Inês male sheep (average body weight 36 kg) were fed a basal diet consisting of roughage (coast cross hay), concentrate mixture (cassava meal, soya bean meal and urea) and a mineral premix. The treatments consisted of the basal diet supplemented with 0, 1·5, 3 or 4·5 g/kg dry matter (DM) of mono-ammonium phosphate to provide increasing P levels representing treatments T0, T1, T2 and T3, respectively. The P content of experimental diets was 1·5; 2·0; 2·5 and 3·0 g P/kg DM, and considered highly deficient, deficient, adequate and in excess, respectively, compared with standard recommended allowances. Animals were injected with 32P and thereafter samples of blood were collected over 7 days, while samples of rumen fluid and saliva were collected 4 and 6 days after injection. Phosphorus intake affected P concentration in ruminal fluid, whereas P concentration in saliva was not affected. The values for P turnover time in the rumen were 1·42, 1·23, 1·18 and 1·04 days, whereas values of endogenous P entry into the rumen were 1·05, 1·37, 1·53 and 1·91 g/day for T0, T1, T2 and T3, respectively, both affected by P intake. The specific activity (SA) of P in saliva, rumen and plasma were also all affected by P intake. The relationship between saliva and rumen SA emphasizes that most endogenous P in the rumen came from saliva. The possibility of an extra P source besides saliva contributing to endogenous P in the rumen is discussed. It is concluded from the results that, regardless of P intake, the flow of endogenous P into the rumen contributes to ensure a minimum supply of this essential element, which may be important in matching the requirements of the rumen microbes.

Type
Modelling Animal Systems Paper
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Association of Official Analytical Chemists (1995). Official Methods of Analysis of AOAC, 16th edn. Arlington, VA: Association of Official Analytical Chemists International.Google Scholar
Bailey, C. B. (1961). Saliva secretion and its relation to feeding in cattle. British Journal of Nutrition 15, 489498.CrossRefGoogle ScholarPubMed
Beardsworth, L. J., Beardsworth, P. M. & Care, A. D. (1989). The effect of ruminal phosphate concentration on the absorption of calcium, phosphorus and magnesium from the reticulo-rumen of the sheep. British Journal of Nutrition 61, 715723.CrossRefGoogle ScholarPubMed
Bibby, J. & Toutenburg, H. (1977). Prediction and Improved Estimation in Linear Models. London, UK: Wiley.Google Scholar
Bravo, D., Sauvant, D., Bogaert, C. & Meschy, F. (2003 a). II. Quantitative aspects of phosphorus absorption in ruminants. Reproduction Nutrition Development 43, 271284.CrossRefGoogle ScholarPubMed
Bravo, D., Sauvant, D., Bogaert, C. & Meschy, F. (2003 b). III. Quantitative aspects of phosphorus excretion in ruminants. Reproduction Nutrition Development 43, 285300.CrossRefGoogle ScholarPubMed
Breves, G., Holler, H., Packheiser, P., Gabel, G. & Martens, H. (1988). Flux of inorganic phosphate across the sheep rumen wall in vivo and in vitro. Quarterly Journal of Experimental Physiology 73, 343351.CrossRefGoogle ScholarPubMed
Challa, J., Braithwaite, G. D. & Dhanoa, M. S. (1989). Phosphorus homeostasis in growing calves. Journal of Agricultural Science, Cambridge 112, 217226.CrossRefGoogle Scholar
Coats, D. A. & Wright, R. D. (1957). Secretion by the parotid gland of the sheep: the relationship between salivary flow and composition. The Journal of Physiology 135, 611622.CrossRefGoogle ScholarPubMed
Dias, R. S., Kebreab, E., Vitti, D. M. S. S., Roque, A. P., Bueno, I. C. S. & France, J. (2006). A revised model for studying phosphorus and calcium kinetics in growing sheep. Journal of Animal Science 84, 27872794.CrossRefGoogle ScholarPubMed
Durand, M. & Kawashima, R. (1979). Influence of minerals in rumen microbial digestion. In Digestive Physiology and Metabolism in Ruminants (Eds Ruckebush, Y. & Thivend, P.), pp. 375408. Lancaster, UK: MTP Press Ltd.Google Scholar
Durand, M. & Komisarczuk, S. (1988). Influence of major minerals on rumen microbiota. Journal of Nutrition 118, 249260.CrossRefGoogle ScholarPubMed
Evans, J. L. & Davis, G. K. (1966). Dietary phosphorus, sulfur and molybdenum and mineral composition of rumen fluid. Journal of Animal Science 25, 10101013.CrossRefGoogle Scholar
Fiske, C. H. & Subbarow, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry 66, 375400.CrossRefGoogle Scholar
Guyton, A. D., McKinney, J. M. & Knowlton, K. F. (2003). The effect of steam-flaked or dry ground corn and supplemental phytic acid on phosphorus partitioning and ruminal phytase activity in lactating cows. Journal of Dairy Science 86, 39723982.CrossRefGoogle ScholarPubMed
Karn, J. F. (2001). Phosphorus nutrition of grazing cattle: a review. Animal Feed Science and Technology 89, 133153.CrossRefGoogle Scholar
Kincaid, R. L. & Rodehutscord, M. (2005). Phosphorus metabolism in rumen. In Nitrogen and Phosphorus Nutrition of Cattle – Reducing the Environmental Impact of Cattle Operations (Eds Pfeffer, E. and Hristov, A.), pp. 187193. Cambridge, MA: CABI Publishing.CrossRefGoogle Scholar
Lin, L. I. K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255268.CrossRefGoogle ScholarPubMed
Lofgreen, G. P., Kleiber, M. & Smith, A. H. (1952). The excretion of injected P32 into the gastrointestinal tract of the young calf. The Journal of Nutrition 47, 561569.CrossRefGoogle ScholarPubMed
Mañas-Almendros, M., Ross, R. & Care, A. D. (1982). Factors affecting the secretion of phosphate in parotid saliva in the sheep and goat. Quarterly Journal of Experimental Physiology 67, 269280.CrossRefGoogle ScholarPubMed
Mcdougall, E. I. (1948). Studies on ruminant saliva. 1. The composition and output of sheep's saliva. Biochemical Journal 43, 99–109.CrossRefGoogle ScholarPubMed
Mertens, D. R. (2002). Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. Journal of AOAC International 82, 12171240.Google Scholar
National Research Council (NRC) (1985). Nutrient Requirements of Sheep, Sixth Revised edition. Washington, DC: National Academy Press.Google Scholar
Nel, J. W. & Moir, R. J. (1974). The effect of ruminal and duodenal application of different levels of calcium and phosphorus to sheep on semi-purified diets. South African Journal of Animal Science 4, 120.Google Scholar
Parthasarathy, D., Garton, G. A. & Phillipson, A. T. (1952). The passage of phosphorus across the rumen epithelium of sheep. Biochemical Journal 52, xvixvii.Google ScholarPubMed
Roque, A. P., Dias, R. S., Vitti, D. M. S. S., Silva Bueno, I. C., Cunha, E. A., Santos, L. E. & Bueno, M. S. (2007). True digestibility of calcium from sources used in finishing lamb diets. Small Ruminant Research 71, 243249.CrossRefGoogle Scholar
SAS Institute Inc. (1999 a). SAS/STAT User's Guide Version 8. Cary, NC: SAS Institute Inc.Google Scholar
SAS Institute Inc. (1999 b). SAS Macro Language: Reference Version 8. Cary, NC: SAS Institute Inc.Google Scholar
Scarisbrick, R. & Ewer, T. K. (1951). The absorption of inorganic phosphate from the rumen of the sheep. Biochemical Journal 49, lxxix.Google ScholarPubMed
Scott, D. & Beastall, G. (1978). The effects of intravenous phosphate loading on salivary phosphate secretion and plasma parathyroid hormone levels in the sheep. Quarterly Journal of Experimental Physiology 63, 147156.CrossRefGoogle ScholarPubMed
Scott, D., Rajaratne, A. A. J. & Buchan, W. (1995). Factors affecting faecal endogenous phosphorus loss in the sheep. Journal of Agricultural Science, Cambridge 124, 145151.CrossRefGoogle Scholar
Smith, A. H., Kleiber, M., Black, A. L. & Baxter, C. F. (1955). Transfer of phosphate in the digestive tract. II. Sheep. Journal of Nutrition 57, 507527.CrossRefGoogle ScholarPubMed
Tomas, F. M. (1973). Parotid salivary secretion in sheep: its measurement and influence on phosphorus in rumen fluid. Quarterly Journal of Experimental Physiology 58, 131138.CrossRefGoogle ScholarPubMed
Tomas, F. M., Moir, R. J. & Somers, M. (1967). Phosphorus turnover in sheep. Australian Journal of Agricultural Research 18, 635645.CrossRefGoogle Scholar
Witt, K. E. & Owens, F. N. (1983). Phosphorus: ruminal availability and effects on digestion. Journal of Animal Science 56, 930937.CrossRefGoogle ScholarPubMed
Yeh, S. T. (2002). Using trapezoidal rule for the area under a curve calculation. In Proceedings of the 27th Annual SAS® User Group International (SUGI) Conference, Paper 229. Orlando, FL.Google Scholar