Published online by Cambridge University Press: 23 November 2016
Cash-constrained farmers who cannot afford herbicides and mineral fertilizers may incorporate green manure cover crops (GMCCs) as relay crops to aid in management of weeds and nitrogen in maize systems under conservation agriculture in cases where rotations are a challenge. An experiment was conducted at two sites with contrasting soil types, University of Zimbabwe farm (clay) and Domboshawa Training Centre (sandy) to investigate the effects of maize/velvet bean intercropping at 8 weeks after planting maize (WAPM), applying different fertilizer rates and exploring their interactive effects on weed composition, maize productivity and biomass production [total maize non-cob biomass (stover) plus GMCC biomass]. The performance of the system depended largely on the amount of rainfall received within and across the seasons, sites and their interaction; also on the amount of fertilizer applied. Generally, biomass yields attained by velvet bean [Mucuna pruriens L. (DC.)] were lower than reported previously. Maize grain yield and weed diversity were higher in treatments with higher fertilizer rates, reaching up to 5·1 t/ha and 1·39, respectively. Generally, the highest weed diversity and highest maize grain yield values were observed in maize/velvet bean combinations and higher fertilizer rates (i.e. 0·27 and 4·8 t/ha, respectively) in the sandy soil. Higher fertilizer rates resulted in greater maize stover yield and this contributed greatly to the biomass productivity of the system in the sandy soil in the 2012/13 season, while the high biomass productivity observed in velvet bean in the clay site in the final season contributed significantly to productivity. Maize productivity was not affected by velvet bean introduced at 8 WAPM in any of the seasons. The present study showed that relay cropping velvet bean as late as 8 WAPM and onwards has potential to increase biomass production without compromising maize yields. However, planting it as late as 8 WAPM results in reduced productivity due to reduced moisture availability.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.