Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T06:37:37.977Z Has data issue: false hasContentIssue false

Relationships between physiological traits and productivity of sugarcane in response to water deficit

Published online by Cambridge University Press:  31 October 2012

M. DE A. SILVA*
Affiliation:
São Paulo State University/UNESP – College of Agricultural Sciences, PO Box 237, 18603-970 Botucatu, SP, Brazil
J. L. JIFON
Affiliation:
Texas AgriLife Research, Texas A&M University System, Weslaco, TX 78596, USA
J. A. G. DA SILVA
Affiliation:
Texas AgriLife Research, Texas A&M University System, Weslaco, TX 78596, USA
C. M. DOS SANTOS
Affiliation:
São Paulo State University/UNESP – College of Agricultural Sciences, PO Box 237, 18603-970 Botucatu, SP, Brazil
V. SHARMA
Affiliation:
Texas AgriLife Research, Texas A&M University System, Weslaco, TX 78596, USA
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The relationships between physiological variables and sugarcane productivity under water deficit conditions were investigated in field studies during 2005 and 2006 in Weslaco, Texas, USA. A total of 78 genotypes and two commercial varieties were studied, one of which was drought-tolerant (TCP93-4245) and the other drought-sensitive (TCP87-3388). All genotypes were subjected to two irrigation regimes: a control well-watered treatment (wet) and a moderate water-deficit stress (dry) treatment for a period of 90 days. Maximum quantum efficiency of photosystem II (Fv/Fm), estimated chlorophyll content (SPAD index), leaf temperature (LT), leaf relative water content (RWC) and productivity were measured. The productivity of all genotypes was, on average, affected negatively; however, certain genotypes did not suffer significant reduction. Under water deficit, the productivity of the genotypes was positively and significantly correlated with Fv/Fm, SPAD index and RWC, while LT had a negative correlation. These findings suggest that genotypes exhibiting traits of high RWC values, high chlorophyll contents and high photosynthetic radiation use efficiency under low moisture availability should be targeted for selection and variety development in programmes aimed at improving sugarcane for drought prone environments.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baker, N. R. & Rosenqvist, E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany 55, 16071621.Google Scholar
Bernardes, M. S. (1987). Fotossíntese no dossel das plantas cultivadas. In Ecofisiologia da produção agrícola (Eds Castro, P. R. C., Ferreira, S. O. & Yamada, T.), pp. 1348. Piracicaba, Brazil: POTAFOS.Google Scholar
Bolhàr-Nordenkampf, H. R., Long, S. P., Baker, N. R., Öquist, G., Schreiber, U. & Lechner, E. G. (1989). Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Functional Ecology 3, 497514.Google Scholar
Carvalho, M. H. C. (2008). Drought stress and reactive oxygen species. Plant Signaling and Behavior 3, 156165.Google Scholar
Gascho, G. J. & Shih, S. F. (1983). Sugarcane. In Crop Water Relations (Eds , I.Teare, D. & Peet, M. M.), pp. 445479. New York: John Wiley.Google Scholar
Ghannoum, O. (2009). C4 photosynthesis and water stress. Annals of Botany 103, 635644.CrossRefGoogle ScholarPubMed
Gonçalves, E. R., Ferreira, V. F., Silva, J. V., Endres, L., Barbosa, T. P. & Duarte, W. G. (2010). Trocas gasosas e fluorescência da clorofila a em variedades de cana-de-açúcar submetidas à deficiência hídrica. Revista Brasileira de Engenharia Agrícola e Ambiental 14, 378386.CrossRefGoogle Scholar
Gorai, M., Hachef, A. & Neffati, M. (2010). Differential responses in growth and water relationship of Medicago sativa (L.) cv. Gabès and Astragalus gombiformis (Pom.) under water-limited conditions. Emirates Journal of Food and Agriculture 22, 0112. Available online at http://ejfa.info/index.php/ejfa/article/view/4902 (accessed 16 August 2012).Google Scholar
González, A., Bermejo, V. & Gimeno, B. S. (2010). Effect of different physiological traits on grain yield in barley grown under irrigated and terminal water deficit conditions. Journal of Agricultural Science, Cambridge 148, 319328.CrossRefGoogle Scholar
Hall, D. O. & Rao, K. K. (1994). Photosynthesis. 6th edn. Cambridge, UK: Cambridge University Press.Google Scholar
Inman-Bamber, N. G. & Smith, D. M. (2005). Water relations in sugarcane and response to water deficits. Field Crops Research 92, 185202.CrossRefGoogle Scholar
Jangpromma, N., Songsri, P., Thammasirirak, S. & Jaisil, P. (2010). Rapid assessment of chlorophyll content in sugarcane using a SPAD chlorophyll meter across different water stress conditions. Asian Journal of Plant Sciences 9, 368374.Google Scholar
Koonjah, S. S., Walker, S., Singels, A., Van Antwerpen, R. & Nayamuth, A. R. (2006). A quantitative of water stress effect on sugarcane photosynthesis. Proceedings of South African Sugar Technologists Association 80, 148158.Google Scholar
Kumar, D. (2005). Breeding for drought resistance. In Abiotic Stresses: Plant Resistance through Breeding and Molecular Approaches (Eds Ashraf, M. & Harris, P. J. C.), pp. 145175. New York: The Haworth Press.Google Scholar
Lawlor, D. W. & Tezara, W. (2009). Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Annals of Botany 103, 561579.CrossRefGoogle Scholar
Li, R. H., Guo, P. G., Baumz, M., Grando, S. & Ceccarelli, S. (2006). Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agricultural Sciences in China 5, 751757.Google Scholar
Liu, W. J., Yuan, S., Zhang, N. H., Lei, T., Duan, H. G., Liang, H. G. & Lin, H. H. (2006). Effect of water stress on photosystem II in two wheat cultivars. Biologia Plantarum 50, 597602.Google Scholar
Liu, D. L., Kingston, G. & Bull, T. A. (1998). A new technique for determining the thermal parameters of phenological development in sugarcane, including suboptimum and supra-optimum temperature regimes. Agricultural and Forest Meteorology 90, 119139.CrossRefGoogle Scholar
Mccormick, A. J., Cramer, M. D. & Watt, D. A. (2008). Regulation of photosynthesis by sugars in sugarcane leaves. Journal of Plant Physiology 165, 18171829.Google Scholar
Maxwell, K. & Johnson, G. N. (2000). Chlorophyll fluorescence: a practical guide. Journal of Experimental Botany 51, 659668.CrossRefGoogle ScholarPubMed
Mauro, R. P., Occhipinti, A., Longo, A. M. G. & Mauromicale, G. (2011). Effects of shading on chlorophyll content, chlorophyll fluorescence and photosynthesis of subterranean clover. Journal of Agronomy and Crop Science 197, 5766.Google Scholar
Matin, M. A., Brown, J. H. & Ferguson, H. (1989). Leaf water potential, relative water content, and diffusive resistance as screening techniques for drought resistance in barley. Agronomy Journal 81, 100105.CrossRefGoogle Scholar
O'Neill, P. M., Shanahan, J. F. & Schepers, J. S. (2006). Use of chlorophyll fluorescence assessments to differentiate corn hybrid response to variable water conditions. Crop Science 46, 681687.Google Scholar
Paknejad, F., Nasri, M., Moghadam, H. R. T., Zahedi, H. & Alahmadi, M. J. (2007). Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars. Journal of Biological Sciences 7, 841847.CrossRefGoogle Scholar
Peryea, F. J. & Kammereck, R. (1997). Use of Minolta SPAD-502 chlorophyll meter to quantify the effectiveness of mid-summer trunk injection of iron on chlorotic pear trees. Journal of Plant Nutrition 20, 14571463.CrossRefGoogle Scholar
Prabu, G., Kawar, P. G., Pagariya, M. C. & Prasad, D. T. (2011). Identification of water deficit stress upregulated genes in sugarcane. Plant Molecular Biology Reporter 29, 291304.Google Scholar
Rodrigues, F. A., Laia, M. L. & Zingaretti, S. M. (2009). Analysis of gene expression profiles under water stress in tolerant and sensitive sugarcane plants. Plant Science 176, 286302.Google Scholar
Ramesh, P. & Mahadevaswamy, M. (2000). Effect of formative phase drought on different classes of shoots, shoot mortality, cane attributes, yield and quality of four sugarcane cultivars. Journal of Agronomy and Crop Science 185, 249258.CrossRefGoogle Scholar
Sato, A. M., Catuchi, T. A., Ribeiro, R. V. & Souza, G. M. (2010). The use of network analysis to uncover homeostatic responses of a drought-tolerant sugarcane cultivar under severe water deficit and phosphorus supply. Acta Physiologiae Plantarum 32, 11451151.CrossRefGoogle Scholar
Silva, M. A., Jifon, J. L., Sharma, V., Silva, J. A. G., Caputo, M. M., Damaj, M. B., Guimarães, E. R. & Ferro, M. I. T. (2011). Use of physiological parameters in screening drought tolerance in sugarcane genotypes. Sugar Tech 13, 191197.CrossRefGoogle Scholar
Silva, M. A., Jifon, J. L., Silva, J. A. G. & Sharma, V. (2007). Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Brazilian Journal of Plant Physiology 19, 193201.Google Scholar
Silva, M. A., Santos, C. M., Arantes, M. T. & Pincelli, R. P. (2010). Fenologia da cana-de-açúcar. In Tópicos em ecofisiologia da cana-de-açúcar (Eds Crusciol, C. A. C., Silva, M. A., Rossetto, R. & Soratto, R. P.), pp. 822. Botucatu, Brazil: FEPAF.Google Scholar
Silva, M. A., Silva, J. A. G., Enciso, J., Sharma, V. & Jifon, J. (2008). Yield components as indicators of drought tolerance of sugarcane. Scientia Agricola 65, 620627.Google Scholar
Silva, P. P., Soares, L., da Costa, J. G., Viana, L. S., Andrade, J. C. F., Gonçalves, E. R., Santos, J. M., Barbosa, G. V. S., Nascimento, V. X., Todaro, A. R., Riffel, A., Grossi-De-Saf, M. F., Barbosa, M. H. P., Sant'ana, A. E. G. & Ramalho Neto, C. E. (2012). Path analysis for selection of drought tolerant sugarcane genotypes through physiological components. Industrial Crops and Products 37, 1119.Google Scholar
Singels, A., Van Den Berg, M., Smit, M. A., Jones, M. R. & Van Antwerpen, R. (2010). Modeling water uptake, growth and sucrose accumulation of sugarcane subjected to water stress. Field Crops Research 117, 5969.Google Scholar
Smit, M. A. & Singels, A. (2006). The response of sugarcane canopy development to water stress. Field Crops Research 98, 9197.Google Scholar
Souza, R. P., Machado, E. C., Silva, J. A. B., Lagôa, A. M. M. A. & Silveira, J. A. G. (2004). Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environmental and Experimental Botany 51, 4556.Google Scholar
Suriyan, C. U. & Chalermpol, K. (2009). Proline accumulation, photosynthetic abilities and growth characters of sugarcane (Saccharum officinarum L.) plantlets in response to iso-osmotic salt and water-deficit stress. Agricultural Sciences in China 8, 5158.CrossRefGoogle Scholar
Taiz, L., Zeiger, E. (2009). Fisiologia Vegetal, 4th edn. Porto Alegre, Spain: Artmed.Google Scholar
Torres Netto, A., Campostrini, E., Oliveira, J. G. & Bressan-Smith, R. E. (2005). Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae 104, 199209.Google Scholar
Van Heerden, P. D. R., Donaldson, R. A., Watt, D. A. & Singels, A. (2010). Biomass accumulation in sugarcane: unravelling the factors underpinning reduced growth phenomena. Journal of Experimental Botany 61, 28772887.Google Scholar
Waclawovsky, A. J., Sato, P. M., Lembke, C. G., Moore, P. H. & Souza, G. M. (2010). Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnology Journal 8, 263276.Google Scholar
Xoconostle-Cazares, B., Ramirez-Ortega, F. A., Flores-Elenes, L. & Ruiz-Medrano, R. (2010). Drought tolerance in crop plants. American Journal of Plant Physiology 5, 241256.CrossRefGoogle Scholar
Zhang, M. Q., Chen, R. K., Luo, J., Lu, J. L. & Xu, J. S. (2000). Analyses for inheritance and combining ability of photochemical activities measured by chlorophyll fluorescence in the segregating generation of sugarcane. Field Crops Research 65, 3139.Google Scholar
Zhao, J., Sun, H., Dai, H., Zhang, G. & Wu, F. (2010). Difference in response to drought stress among Tibet wild barley genotypes. Euphytica 172, 395403.Google Scholar
Zheng, Y. L., Feng, Y. L., Lei, Y. B. & Yang, C. Y. (2009). Different photosynthetic responses to night chilling among twelve populations of Jatropha curcas. Photosynthetica 47, 559566.Google Scholar
Zou, J. H., Yu, K., Zhang, Z. G., Jiang, W. S. & Liu, D. H. (2009). Antioxidant response system and chlorophyll fluorescence in chromium (VI)-treated Zea mays L. seedlings. Acta Biologica Cracoviensia Botanica 51, 2333.Google Scholar