Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T05:58:56.077Z Has data issue: false hasContentIssue false

Pumpkin fruit, seed and oil yield is independent of fruit or seed photosynthesis

Published online by Cambridge University Press:  14 April 2011

M. KREFT
Affiliation:
Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia Celica Biomedical Center, Tehnoloski park 24, 1000 Ljubljana, Slovenia
M. BERDEN-ZRIMEC
Affiliation:
Institute of Physical Biology, Toplarniska 19, 1000 Ljubljana, Slovenia
A. ZRIMEC
Affiliation:
Institute of Physical Biology, Toplarniska 19, 1000 Ljubljana, Slovenia
M. ERDANI KREFT
Affiliation:
Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
I. KREFT
Affiliation:
Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
S. KREFT*
Affiliation:
Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Summer pumpkin (Cucurbita pepo L.) is an herbaceous plant with big fruits and oily seeds. Photosynthetic oxygen release was previously proposed to promote storage activity of seeds under internal hypoxia, in particular in oilseeds. Photosynthetic activity or any other function of chlorophylls from pumpkin seeds has never been demonstrated. The aim of the present research was to test whether illumination of pumpkin fruits has any influence on the yield and to measure photosynthetic activity of pumpkin seeds. The fruits grown in the dark were not significantly different from controls exposed to light in regard to fruit weight, size, number and weight of seeds or the content of lipids and pigments. Delayed fluorescence measurement showed no photosynthetic activity in pumpkin seeds in any developmental stage. Fruit wall, on the other hand, had significant photosynthetic activity. It is concluded that chlorophyll in pumpkin seeds does not mediate photosynthesis, which would in turn result in increased pumpkin yield.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asokanthan, P., Johnson, R. W., Griffith, M. & Krol, M. (1997). The photosynthetic potential of canola embryos. Physiologia Plantarum 101, 353360.CrossRefGoogle Scholar
Belitz, H. D. & Grosch, W. (1987) Food Chemistry. Berlin: Springer.Google Scholar
Berden-Zrimec, M., Drinovec, L., Molinari, I., Zrimec, A., Fonda Umani, S. & Monti, M. (2008). Delayed fluorescence as a measure of nutrient limitation in Dunaliella tertiolecta. Journal of Photochemistry and Photobiology B: Biology 92, 1318.CrossRefGoogle ScholarPubMed
Bertsch, W. F. (1962). Two photoreactions in photosynthesis: evidence from the delayed light emission of Chlorella. Proceedings of the National Academy of Sciences, USA 48, 20002004.CrossRefGoogle ScholarPubMed
Bjorn, L. O. (1971). Far-red induced, long-lived afterglow from photosynthetic cells – size of afterglow unit and paths of energy accumulation and dissipation. Photochemistry and Photobiology 13, 520.CrossRefGoogle Scholar
Böddi, B., Láng, F. & Soós, J. (1979). A study of 650 nm protochlorophyll form in pumpkin seed coat. Plant Science Letters 16, 7579.CrossRefGoogle Scholar
Bombardelli, E. & Morazzoni, P. (1997). Cucurbita pepo L. Fitoterapia 68, 291302.Google Scholar
Borisjuk, L., Rolletschek, H., Walenta, S., Panitz, R., Wobus, U. & Weber, H. (2003). Energy status and its control on embryogenesis of legumes: ATP distribution within Vicia faba embryos is developmentally regulated and correlated with photosynthetic capacity. Plant Journal 36, 318329.CrossRefGoogle ScholarPubMed
Borisjuk, L., Nguyen, T. H., Neuberger, T., Rutten, T., Tschiersch, H., Claus, B., Feussner, I., Webb, A. G., Jakob, P., Weber, H., Wobus, U. & Rolletschek, H. (2005). Gradients of lipid storage, photosynthesis and plastid differentiation in developing soybean seeds. New Phytologist 167, 761776.CrossRefGoogle ScholarPubMed
Desai, T. S., Rane, S. S., Tatake, V. G. & Sane, P. V. (1983). Identification of far-red-induced relative increase in the decay of delayed light emission from photosynthetic membranes with thermoluminescence peak V appearing at 321 K. Biochimica et Biophysica Acta 724, 485489.Google Scholar
Eastmond, P. & Rawsthorne, S. (1998). Comparison of the metabolic properties of plastids isolated from developing leaves or embryos of Brassica napus. Journal of Experimental Botany 49, 11051111.Google Scholar
Fader, G. M. & Koller, H. R. (1985). Seed growth rate and carbohydrate pool sizes of the soybean fruit. Plant Physiology 79, 663666.CrossRefGoogle ScholarPubMed
Flügge, U. I. (1999). Phosphate translocators in plastids. Annual Review of Plant Physiology and Plant Molecular Biology 50, 2745.CrossRefGoogle ScholarPubMed
Fruhwirth, G. O. & Hermetter, A. (2007). Seeds and oil of the Styrian oil pumpkin: components and biological activities. European Journal of Lipid Science and Technology 109, 11281140.Google Scholar
Fuhrmann, J., Johnen, T. & Heise, K. P. (1994). Compartmentation of fatty acid metabolism in zygotic rape embryos. Journal of Plant Physiology 143, 565569.CrossRefGoogle Scholar
Geigenberger, P. (2003). Response of plant metabolism to too little oxygen. Current Opinion in Plant Biology 6, 247256.Google Scholar
Germ, M., Kreft, I. & Osvald, J. (2005). Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins (Cucurbita pepo L.). Plant Physiology and Biochemistry 43, 445448.CrossRefGoogle ScholarPubMed
Jalink, H., Frandas, A., Van Der Schoor, R. & Bino, R. J. (1998). Chlorophyll fluorescence of the testa of Brassica oleracea seeds as an indicator of seed maturity and seed quality. Scientia Agricola 55, 8893.CrossRefGoogle Scholar
Jeffrey, C. (2003) Theoretical and practical problems in the classification and nomenclature of cultivated plants, with examples from Cucurbitaceae and Compositae. In Rudolf Mansfeld and Plant Genetic Resources. Proceedings of a Symposium Dedicated to the 100th Birthday of Rudolf Mansfeld (Eds Knüpffer, H. & Ochsmann, J.), pp. 5159. Germany: Gatersleben.Google Scholar
Joliot, P., Joliot, A., Bouges, B. & Barbieri, G. (1971). Studies of system-II photocenters by comparative measurements of luminescence, fluorescence, and oxygen emission. Photochemistry and Photobiology 14, 287305.CrossRefGoogle Scholar
Jones, O. T. (1966). A protein-protochlorophyll complex obtained from inner seed coats of Cucurbita pepo. The resolution of its two pigment groups into true protochlorophyll and a pigment related to bacterial protochlorophyll. Biochemical Journal 101, 153160.Google Scholar
Katsumata, M., Koike, T., Nishikawa, M., Kazumura, K. & Tsuchiya, H. (2006). Rapid ecotoxicological bioassay using delayed fluorescence in the green alga Pseudokirchneriella subcapitata. Water Research 18, 33933400.CrossRefGoogle Scholar
Kreft, M., Zorec, R., Janeš, D. & Kreft, S. (2009). Histolocalization of the oil and pigments in the pumpkin seed. Annals of Applied Biology 154, 413418.CrossRefGoogle Scholar
Kreft, S. & Kreft, M. (2007). Physicochemical and physiological basis of dichromatic colour. Naturwissenschaften 94, 935939.Google Scholar
Kreft, S. & Kreft, M. (2009). Quantification of dichromatism: a characteristic of color in transparent materials. Journal of the Optical Society of America A: Optics, Image Science and Vision 26, 15761581.CrossRefGoogle ScholarPubMed
Monti, M., Zrimec, A., Beran, A., Berden Zrimec, M., Drinovec, L., Kosi, G. & Tamberlich, F. (2005). Delayed luminescence of Prorocentrum minimum under controlled conditions. Harmful Algae 4, 643650.CrossRefGoogle Scholar
Mukaida, N., Kawai, N., Onoue, Y. & Nishikawa, Y. (1993). Three-dimensional chromatographic analysis of protochlorophylls in the inner seed coats of pumpkin. Analytical Sciences 9, 625629.CrossRefGoogle Scholar
Rolletschek, H., Borisjuk, L., Koschorreck, M., Wobus, U. & Weber, H. (2002). Legume embryos develop in a hypoxic environment. Journal of Experimental Botany 53, 10991107.Google Scholar
Rolletschek, H., Radchuk, R., Klukas, C., Schreiber, F., Wobus, U. & Borisjuk, L. (2005). Evidence of a key role for photosynthetic oxygen release in oil storage in developing soybean seeds. New Phytologist 167, 777786.CrossRefGoogle ScholarPubMed
Rolletschek, H., Weber, H. & Borisjuk, L. (2003). Energy status and its control on embryogenesis of legumes. Embryo photosynthesis contributes to oxygen supply and is coupled to biosynthetic fluxes. Plant Physiology 132, 11961206.Google Scholar
Ruuska, S. A., Schwender, J. & Ohlrogge, J. B. (2004). The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiology 136, 27002709.CrossRefGoogle ScholarPubMed
Schiebel-Schlosser, G. & Friederich, M. (1998). Phytotherapy of BPH with pumpkin seeds – a multicentric clinical trial. Zeitschrift fur Phytotherapie 19, 7176.Google Scholar
Schwender, J., Goffman, F., Ohlrogge, J. B. & Shachar-Hill, Y. (2004). Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432, 779782.CrossRefGoogle ScholarPubMed
Sefcik, L. T., Zak, D. R. & Ellsworth, D. S. (2006). Photosynthetic responses to understory shade and elevated carbon dioxide concentration in four northern hardwood tree species. Tree Physiology 26, 15891599.Google Scholar
Smrkolj, P., Stibilj, V., Kreft, I. & Kapolna, E. (2005). Selenium species determination in selenium-enriched pumpkin (Cucurbita pepo L.) seeds by HPLC-UV-HG-AFS. Analytical Sciences 21, 15011504.CrossRefGoogle Scholar
Steckel, J. R. A., Gray, D. & Rowse, H. R. (1989). Relationships between indices of seed maturity and carrot seed quality. Annals of Applied Biology 114, 177183.CrossRefGoogle Scholar
Strehler, B. L. & Arnold, W. (1951). Light production by green plants. Journal of General Physiology 34, 809820.Google Scholar
Sugimoto, T., Tanaka, K., Momma, M. & Saio, K. (1987). Photosynthetic activity in the developing cotyledon of soybean seeds. Agricultural and Biological Chemistry 51, 12271230.Google Scholar
Trease, G. E. & Evans, W. C. (1983). Pharmacognosy, 12th edn. London: Baillière Tindall.Google Scholar
Vigeolas, H., Van Dongen, J. T., Waldeck, P., Hühn, D. & Geigenberger, P. (2003). Lipid storage metabolism is limited by the prevailing low oxygen concentrations within developing seeds of oilseed rape. Plant Physiology 133, 20482060.CrossRefGoogle ScholarPubMed
Ward, K., Scarth, R., McVetty, P. B. E. & Daun, J. K. (1992). Effects of genotype and environment on seed chlorophyll degradation during ripening in four cultivars of oilseed rape (Brassica napus). Canadian Journal of Plant Science 72, 643649.Google Scholar
Ward, K., Scarth, R., Vessey, J. K. & Daun, J. K. (1995). Chlorophyll degradation in summer oilseed rape and summer turnip rape during seed ripening. Canadian Journal of Plant Science 75, 413420.CrossRefGoogle Scholar
Weber, H., Borisjuk, L. & Wobus, U. (2005). Molecular physiology of legume seed development. Annual Review of Plant Biology 56, 253279.Google Scholar
Willms, J. R., Salon, C. & Layzell, D. B. (1999). Evidence for light-stimulated fatty acid synthesis in soybean fruit. Plant Physiology 120, 11171128.CrossRefGoogle ScholarPubMed
Yazdi-Samadi, B., Rinne, R. W. & Seif, R. D. (1977). Components of developing soybean seeds: oil, protein, sugars, starch, organic acids and amino acids. Agronomy Journal 69, 481486.Google Scholar
Zraidi, A., Pachner, M. & Lelley, T. (2003). On the genetics and histology of the hull-less character of styrian oil-pumpkin (Cucurbita pepo L.). Cucurbit Genetics Cooperative Report 26, 5761.Google Scholar