Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T08:36:31.900Z Has data issue: false hasContentIssue false

The present position of the theory of the coagulation of dilute clay suspensions A résumé.

Published online by Cambridge University Press:  27 March 2009

E. W. Russell
Affiliation:
(Soil Physics Department, Rothamsted Experimental Station, Harpenden, Herts.)

Extract

In this paper the general theory of the coagulation of dilute clay suspensions is discussed. The more important of the points considered are summarised below.

1. Two separate mechanisms causing collisions between suspended particles are considered, namely their Brownian motion and the mass motion of one group of particles relative to another group. Following Wiegner, these two types of collision are called perikinetic and orthokinetic collisions respectively. The rate of coagulation of a suspension is then shown to depend on the rate of collisions between particles and on the probability of adhesion between them when they collide. If this probability is unity, that is if every collision between two particles results in their adhesion, the suspension is undergoing rapid coagulation. There is excellent agreement between theory and experiment for this type of coagulation whenever the mathematical equations involved can be solved. But if the probability of adhesion is less than unity, the suspension is undergoing slow coagulation, and there is as yet no theory capable of giving the rate of coagulation of such a system.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1932

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramson, H. A.The influence of size, shape and conductivity on cataphoretic mobility, and its biological significance. A review. J.Phys. Chem. (1931), 35, 289.CrossRefGoogle Scholar
Anderson, M. S.The influence of substituted cations on the properties of soil colloids. J. Agric. Res. (1929), 38, 565.Google Scholar
Anderson, M. S. and Mattson, S. Properties of the colloidal soil material. U.S. Dept. of Agric. (1926), Bull. No. 1452.Google Scholar
Baver, L. D. The effect of the amount and nature of exchangeable cations on the structure of a colloidal clay. Missouri Expt. Sta. Res. (1929), Bull. No. 129.Google Scholar
Bikerman, J. J.Z. physikal. Chem. (1925), 115, 261.CrossRefGoogle Scholar
Bjerrum, M.Die elektrischen Kräfte zwischen den Ionen und ihre Wirkungen. Ergebn. d. exakt. Naturw. (1926), 5, 125.Google Scholar
Bradfield, R.The relation of hydrogen-ion concentration to the flocculation of a colloidal clay. J. Amer. Chem. Soc.(1923), 45, 1243.CrossRefGoogle Scholar
Bradfield, R.The chemical nature of colloidal clay. J. Amer. Soc. Agron. (1925), 17, 253.CrossRefGoogle Scholar
Bradfield, R.Factors affecting the coagulation of colloidal clay. J. Physical Chem. (1928), 32, 202.CrossRefGoogle Scholar
Briggs, D. R.The measurement of the electro-kinetic potential on proteins by the streaming potential method. J. Amer. Chem. Soc. (1928), 50, 2358.CrossRefGoogle Scholar
Briggs, D. R.Cataphoretic measurements and the theory of the critical potential. J. Physical Chem. (1930), 34, 1326.CrossRefGoogle Scholar
Burton, E. F.The action of electrolytes on copper colloidal solutions. Phil. Mag. (1909), Ser. 6,17, 583.CrossRefGoogle Scholar
Burton, E. F. and Annetts, M.Equilibrium phenomena in coagulation of colloids. J. Physical Chem. (1931), 35, 48.CrossRefGoogle Scholar
Butler, P. J. R.The influence of temperature upon “rapid” coagulation of gold hydrosol. J. Physical Chem. (1930), 34, 656.CrossRefGoogle Scholar
Chapman, D. L.A contribution to the theory of electrocapillarity. Phil. Mag. (1913), Ser. 6, 25, 475.CrossRefGoogle Scholar
Comber, N. M.The flocculation of soils. J. Agric. Sci. (1920), 10, 425.CrossRefGoogle Scholar
Comber, N. M.The flocculation of soils. II. J. Agric. Sci. (1921), 11, 450.CrossRefGoogle Scholar
Comber, N. M.The flocculation of soils. III. J. Agric. Sci. (1922), 12, 372.CrossRefGoogle Scholar
Debye, P. and Hückel, E.Zur Theorie der Elektrolyte. Physikal. Z. (1923), 24, 185.Google Scholar
Debye, P. and Hückel, E.Bemerkungen zu einem Satze über die kataphoretische Wanderungs-geschwindigkeit suspendierter Teilchen. Physikal. Z. (1924), 25, 49.Google Scholar
Dorfman, W. A.Ionenantagonismus an kolloiden Modellen. III. Kolloid-Z. (1930), 52, 66.CrossRefGoogle Scholar
Dorfman, W. A. and Šcerbacewa, D.Ionenantagonismus an kolloiden Modellen. IV. Kolloid-Z. (1930), 52, 289.CrossRefGoogle Scholar
Fowler, R. H.Statistical mechanics (1929), chap. VIII. Cambridge University Press.Google Scholar
Freundlich, H.Zur Theorie der Koagulationsgeschwindigkeit. Kolloid-Z. (1918), 23, 163.CrossRefGoogle Scholar
Freundlich, H. and Birstein, V.Ueber das Gelten der Traubeschen Regel bei der Koagulation hydrophober Sole. Koll.-Chem. Beih. (1926), 22, 95.CrossRefGoogle Scholar
Freundlich, H. and Zeh, H. P.Z. physikal. Chem. (1924), 114, 65.CrossRefGoogle Scholar
Garner, M. and Lewis, W. C. M.The effect of temperature on the rate of coagulation of gold sols. J. Physical Chem. (1926), 30, 1401.CrossRefGoogle Scholar
Gedroiz, K. K. The action of electrolytes on clay suspensions. Bureau of Agric. and Soil Sci. of Scientific Comm. of Dept. of Land Organisation and Agric. Petrograd (1915). Comm. No. 24. Used only in the English translation issued by U.S. Dept. of Agric. 1923.Google Scholar
Gouy, L.Sur la constitution de la charge électrique á la surface d'un électrolyte. Compt. Rend. (1909), 149, 654.Google Scholar
Gouy, L.J. de Phys. (1910) (4), 9, 457.Google Scholar
Gronwall, T. W., La Mer, V. K. and Sandved, K.Ueber den Einfluss der soge-nannten höheren Glieder der Debye-Hückelschen Theorie der Lösurigen starker Elektrolyten. Physikal. Z. (1928), 29, 358.Google Scholar
Hardy, F.Anomalous flocculation in colloidal clays and soils. J. Physical Chem (1926), 30, 254.CrossRefGoogle Scholar
Hardy, W. B.A preliminary investigation of the conditions which determine the stability of irreversible hydrosols. J. Physical Chem. (1900), 4, 235 and Proc. Boy. Soc. 66, 110.CrossRefGoogle Scholar
Helmholtz, H. v. Wied. Ann. (1879), 7, 337.CrossRefGoogle Scholar
HÜckel, E.Die Kataphorese der Kugel. Physikal. Z. (1924), 25, 204.Google Scholar
Keen, B. A.The physical properties of the soil (1931). Longmans, Green and Co.Google Scholar
Kruyt, H. R. and Van Arkel, A. E.Die Ausflockungsgeschwindigkeit des Selensols. Kolloid-Z. (1923), 32, 29.CrossRefGoogle Scholar
Kruyt, H. R. and Bungenberg De Jong, H. G.Zur Kenntnis lyophilen Kolloide. Koll.-Chem. Beih. (1929), 28, 1.Google Scholar
Kruyt, H. R. and De Haan, E. F.Ueber die sog. “langsame” Koagulation. Kolloid-Z. (1930), 51, 61.CrossRefGoogle Scholar
Kruyt, H. R., Roodvoets, A. C. W. and Van Der Willigen, P. C.Cataphoresis, electrical charge, critical potential and stability of colloids. Coll. Symposium Monograph (1926), 4, 304.Google Scholar
Kruyt, H. R. and Tendeloo, H. J. C.Zur Kenntnis der lyophilen Kolloide. IV. Koll.-Chem. Beih. (1929), 29, 413.CrossRefGoogle Scholar
Kruyt, H. R. and Van Der Willigen, P. C. Z.physikal. Chem. (1927), 130, 170.CrossRefGoogle Scholar
Kruyt, H. R. and Van Der Willigen, P. C. Z.Ueber die Methodik der kataphoretischen Messungen bei Suspensoiden. Kolloid-Z. (1928 a), 44, 22.CrossRefGoogle Scholar
Kruyt, H. R. and Van Der Willigen, P. C. Z.Strömungspotentiale und Kölloidstabilität. II. Kolloid-Z. (1928 b), 45, 307.CrossRefGoogle Scholar
Linder, S. E. and Picton, H.Solution and pseudo-solution. II. Some physical properties of arsenious sulphide and other solutions. J. Chem. Soc. (1895), 67, 63.CrossRefGoogle Scholar
Martin, W. M. and Gortner, R. A.Studies on electrokinetic potentials. V. J. Physical Chem. (1930), 34, 1509.CrossRefGoogle Scholar
Mattson, S.Die Beziehungen zwischen Ausflockung, Adsorption und Teilchenladung mit besonderer Berücksichtigung der Hydroxylionen. Koll.-Chem. Beih. (1922), 14, 227.CrossRefGoogle Scholar
Mattson, S.Cataphoresis and the electrical neutralisation of colloidal material. J. Physical Chem. (1928), 32, 1532.CrossRefGoogle Scholar
Mattson, S.The laws of soil colloidal behaviour. II. Soil Sci. (1929), 28, 373.CrossRefGoogle Scholar
Mcdowell, C. M. and Usher, F. L.Viscosity and rigidity in suspensions of fine particles. Proc. Roy. Soc. A (1931), 131, 409 and 564.Google Scholar
Mooney, M.Physical Rev. (1924), 23, 396.CrossRefGoogle Scholar
Mooney, M.Electrophoresis and the diffuse ionic layer. J. Physical Chem. (1931), 35, 331.CrossRefGoogle Scholar
Müller, H.Zur Theorie der elektrischen Ladung und der Koagulation der Kolloide. Koll.-Chem. Beih. (1928 a), 26, 257.CrossRefGoogle Scholar
Müller, H.Zur allgemeinen Theorie der raschen Koagulation. Koll.-Chem. Beih. (1928 b), 27, 223.CrossRefGoogle Scholar
Oakley, H. B.The anomalous floculation of clay. Nature (1926), 118, 661.CrossRefGoogle Scholar
Oakley, H. B.The influence of alkalis on the coagulation of silica and clay suspensions by alkali chlorides. J. Chem. Soc. (1927), p. 3054.CrossRefGoogle Scholar
Pauli, W. and Wittenberger, M.Zur Kenntnis der Nebenionenwirkung bei der Elektrolytkoagulation der Kolloide. Kolloid-Z. (1930), 50, 228.CrossRefGoogle Scholar
, PellatQuoted from Perrin, J. Chim. phys. (1904), 2, 601.Google Scholar
Powis, F.Die Beziehung zwischen der Beständigkeit einer Ölemulsion und der Potentialdifferenz an der Öl-Wassergrenzfläche und die Koagulation kolloider Suspensionen. Z. physikal. Chem. (1914), 89, 186.CrossRefGoogle Scholar
Powis, F.The coagulation of colloidal arsenious sulphide by electrolytes, and its relation to the potential difference at the surface of the particles. J. Chem. Soc. (1916), 109, 734.CrossRefGoogle Scholar
Prideaux, E. B. R. and Howitt, F. O.The electrophoresis of protein sols in the presence of gold sols, albumen, gelatin and casein. Proc. Roy. Soc. A (1930), 126, 126. (See also Howitt, F. O. and Prideaux, E. B. R. J. Sci. Instr. (1930), 7, 89.)Google Scholar
Schulze, H.J. pr. Chem. (1882), 25, 431.CrossRefGoogle Scholar
Smoluchowski, M. v. Drei Vorträge über Diffusion, Brownschen Molekularbewegung und Koagulation von Kolloidteilchen. Physikal. Z. (1916), 17, 557 and 583.Google Scholar
Smoluchowski, M.Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. physikal. Chem. (1917), 92, 129.Google Scholar
Smoluchowski, M.Graetz Handb. d. Elektrizität u. d. Magnetismus (1914), 2, 393.Google Scholar
Stern, O.Zur Theorie der elektrolytischen Doppelschichten. Zeit. f. Elektrochemie (1924), 30, 508.Google Scholar
Tuorila, P.Ueber die rasche und langsame Koagulation von polydispersen Systemen.Koll.-Chem. Beih. (1926), 22, 191.CrossRefGoogle Scholar
Tuorila, P.Ueber orthokinetische und perikinetische Koagulation. Koll.-Chem. Beih. (1927), 24, 1.CrossRefGoogle Scholar
Tuorila, P.Eine ultramikroskopische Methode zur Bestimmungen der Ladungsgrosse kolloider Teilchen. Kolloid-Z. (1928 a), 44, 11.CrossRefGoogle Scholar
Tuorila, P.Ueber Beziehungen zwischen Koagulation, elektrokinetischen Wanderungs-geschwindigkeiten, Ionenhydratation und chemischer Beeinflussung. Koll.-Chem. Beih. (1928 b), 27, 44.CrossRefGoogle Scholar
Whang, S. H.Ueber den Einfluss oberflächenaktiver Stoffe sowie von Elektrolyten bei Berücksichtigung beider Ionenarten auf die elektrophoretische Wanderungs-geschwindigkeit lyophober Sole. Koll.-Chem. Beih. (1931), 32, 169.CrossRefGoogle Scholar
Whetham, W. C. D.Phil. Mag. (1899), Ser. v, 48, 474.CrossRefGoogle Scholar
Wiegner, G.Dispersität und Basenaustausch (Ionenaustausch). Kolloid-Z. (1925), 36, Ergänzungsband, p. 341.CrossRefGoogle Scholar
Wiegner, G.Ueber Koagulationen. Z.f. Pflanzenernähr. A (1928), 11, 185.Google Scholar
Wiegner, G. Coagulation. J. Soc. Chem. Ind. (1931), 50, 55 T.Google Scholar
Wiegner, G. and Marshall, C. E.Die Elektrolytkoagulation stäbchenfömiger Kolloide. Z. physikal. Ghem. A (1929 a), 140, 1.Google Scholar
Wiegner, G. and Marshall, C. E.Die Elektrolytkoagulation stäbchenförmiger Kolloide. II. Z. physikal. Chem. A (1929 b), 140, 39.CrossRefGoogle Scholar
Wiegner, G. and Russell, E. W.Ueber die Bestimmung der Teilchenzahlen in Solen durch Auszählen im Ultramikroskop. kolloid-Z. (1930), 52, 1, 189.CrossRefGoogle Scholar
Wiegner, G. and Tuorila, P.Ueber die rasche Koagulation polydisperser Systeme. Kolloid-Z. (1926), 38, 3.CrossRefGoogle Scholar