Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T22:01:59.277Z Has data issue: false hasContentIssue false

Predicting hydraulic properties of seasonally impounded soils

Published online by Cambridge University Press:  08 October 2009

N. G. PATIL*
Affiliation:
NBSS & LUP, Shankarnagar P. O., Amravati road, Nagpur, India
G. S. RAJPUT
Affiliation:
Faculty, College of Agricultural Engineering J. N. K. V. V., Adhartal P. O., Jabalpur, India
R. K. NEMA
Affiliation:
Faculty, College of Agricultural Engineering J. N. K. V. V., Adhartal P. O., Jabalpur, India
R. B. SINGH
Affiliation:
Faculty, College of Agricultural Engineering J. N. K. V. V., Adhartal P. O., Jabalpur, India
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Agricultural crop management decisions often require data on hydraulic properties of soils. Little information is available on hydraulic properties of clay soils that are impounded by rainwater (known as ‘Haveli’ lands) every year during the monsoon season in large tracts of Madhya Pradesh in India. Estimating hydraulic properties using global pedotransfer functions (PTFs) is one possible way to collect such information. Rules in the widely used global PTF Rosetta were executed to obtain estimates of two important hydraulic properties, namely soil water retention characteristics (SWRC) and saturated hydraulic conductivity (Ks). SWRC estimates obtained with maximum input (particle size distribution, bulk density, field capacity and permanent wilting point) in Rosetta were relatively closer to the laboratory-measured data as compared with the estimates obtained with lower levels of input. Root mean square error (RMSE) of estimates ranged from 0·01 to 0·05 m3/m3. Hierarchical PTFs to predict Ks from basic soil properties were derived using statistical regression and artificial neural networks. Evaluation of these indicated that neural PTFs were acceptable and hence could be used without loss of accuracy.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Auerswald, K. (1995). Percolation stability of aggregates from arable topsoils. Soil Science 159, 142148.CrossRefGoogle Scholar
Black, C. A., Evans, D. D., White, J. L., Ensminger, L. E. & Clark, F. E. (1965). Methods of Soil Analysis, Part 2. Madison, WI: American Society of Agronomy, Inc.CrossRefGoogle Scholar
Chen, C. & Payne, W. A. (2001). Measured and modeled unsaturated hydraulic conductivity of a Walla Walla silt loam. Soil Science Society of America Journal 65, 13851391.CrossRefGoogle Scholar
Cornelius, W. M., Ronsyn, J., Van Meirvenne, M. & Hartmann, R. (2001). Evaluation of pedotransfer functions for predicting soil moisture retention curve. Soil Science Society of America Journal 65, 638648.CrossRefGoogle Scholar
Cosby, B. J., Hornberger, G. M., Clapp, R. B. & Ginn, T. R. (1984). A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resources Research 20, 682690.CrossRefGoogle Scholar
Gérard, F., Tinsley, M. & Mayer, K. U. (2004). Preferential flow revealed by hydrologic modeling based on predicted hydraulic properties. Soil Science Society of America Journal 68, 15261538.Google Scholar
Givi, J., Prasher, S. O. & Patel, R. M. (2004). Evaluation of pedotransfer functions in predicting the soil water contents at field capacity and wilting point. Agricultural Water Management 70, 8396.CrossRefGoogle Scholar
Jackson, M. L. (1973). Soil Chemical Analysis. New Delhi: Prentice Hall India Limited.Google Scholar
Jain, S. K., Singh, V. P. & Van Genuchten, M. Th. (2004). Analysis of soil water retention data using artificial neural networks. Journal of Hydrologic Engineering 9, 415420.Google Scholar
Lado, M., Paz, A. & Ben-Hur, M. (2004). Organic matter and aggregate-size interactions in saturated hydraulic conductivity. Soil Science Society of America Journal 68, 234242.Google Scholar
Leij, F., Schaap, M. G. & Arya, L. M. (2002). Water retention and storage: indirect methods. In Methods of Soil Analysis. Part 4. Physical Methods (Eds Dane, J. H. and Topp, G. C.), pp. 10091045. SSSA Book Series No. 5. Madison, WI: SSSA.Google Scholar
Maier, H. R. & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and application. Environmental Modelling and Software 15, 101124.CrossRefGoogle Scholar
Mayr, T. & Jarvis, N. J. (1999). Pedotransfer function to estimate soil water retention parameter for a modified Brooks–Corey type model. Geoderma 91, 19.Google Scholar
Mbagwu, J. S. C. & Auerswald, K. (1999). Relationship of percolation stability of soil aggregates to land use, selected properties, structural indices and simulated rainfall erosion. Soil Tillage Research 50, 197206.CrossRefGoogle Scholar
Minasny, B. & McBratney, A. B. (2002). The neuro-m method for fitting neural network parametric pedotransfer functions. Soil Science Society of America Journal 66, 352361.Google Scholar
Minasny, B., McBratney, A. B. & Bristow, K. L. (1999). Comparison of different approaches to the development of pedotransfer functions for water retention curves. Geoderma 93, 225253.CrossRefGoogle Scholar
Nemes, A., Schaap, M. G. & Wösten, J. H. M. (2003). Functional evaluation of pedotransfer functions derived from different scales of data collection. Soil Science Society of America Journal 67, 10931102.CrossRefGoogle Scholar
Pachepsky, Y. A. & Rawls, W. J. (2003). Soil structure and pedotransfer functions. European Journal of Soil Science 54, 443451.CrossRefGoogle Scholar
Pachepsky, Y. A., Timlin, D. J. & Varallyay, G. (1996). Artificial neural networks to estimate soil water retention from easily measurable data. Soil Science Society of America Journal 60, 727773.Google Scholar
Pachepsky, Y. A., Rawls, W. J. & Lin, H. S. (2006). Hydropedology and pedotransfer functions. Geoderma 131, 308316.Google Scholar
Parasuraman, K., Elshorbagy, A. & Si, B. C. (2007). Estimating saturated hydraulic conductivity using genetic programming. Soil Science Society of America Journal 71, 16761684.Google Scholar
Rajput, G. S., Singh, A., Shrivastava, P., Kewat, M. L. & Sharma, S. K. (2004). Indigenous Haveli System of Participatory Rainwater Management in Central India. Jabalpur, India: J. N. K.V. V. V.Google Scholar
Rawls, W. J. & Brakensiek, D. L. (1983). A procedure to predict Green and Ampt infiltration parameters. In Advances in Infiltration, p. 102112. St. Joseph, MI: ASAE.Google Scholar
Rawls, W. J. & Brakensiek, D. L. (1985). Prediction of soil water properties for hydro-logic modeling. In Watershed Management in the Eighties. Proceedings of the Symposium Sponsored by Committee on Watershed Management, I & D Division, ASCE. ASCE Convention, Denver, CO, 30 April–1 May (Eds Jones, E. E. & Ward, T. J.), pp. 293299. Reston, VA: ASCE.Google Scholar
Rawls, W. J., Pachepsky, Y. & Shen, M. H. (2001). Testing soil water retention estimation with the MUUF pedotransfer model using data from the southern United States. Journal of Hydrology 251, 177185.CrossRefGoogle Scholar
Romano, N. & Palladino, M. (2002). Prediction of soil water retention using soil physical data and terrain attributes. Journal of Hydrology 265, 5675.Google Scholar
Rubio, C. & Llorens, P. (2005). Comparing different pedotransfer functions for silt loam soils in a Mediterranean mountain area. ASA-CSSA-SSSA International Annual Meetings, Salt Lake City, UT – 6–10 November 2005.Google Scholar
Saxton, K. E., Rawls, W. J., Romberger, J. S. & Papendick, R. I. (1986). Estimating generalized soil–water characteristics from texture. Soil Science Society of America Journal 50, 10311036.CrossRefGoogle Scholar
Schaap, M. G. & Leij, F. J. (2000). Improved prediction of unsaturated hydraulic conductivity with the Mualem–van Genuchten. Soil Science Society of America Journal 64, 843851.Google Scholar
Schaap, M. G., Leij, F. L. & Van Genuchten, M. Th. (1998). Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Science Society of America Journal 62, 847855.CrossRefGoogle Scholar
Schaap, M. G., Leij, F. L. & Van Genuchten, M. Th. (2001). Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology 251, 163176.CrossRefGoogle Scholar
Schafer, W. M. & Singer, M. J. (1976). A new method of measuring shrink-swell potential using soil pastes. Soil Science Society of America Journal 40, 805806.CrossRefGoogle Scholar
Soet, M. & Stricker, J. N. M. (2003). Functional behaviour of pedotransfer functions in soil water flow simulation. Hydrological Process 17, 16591670.CrossRefGoogle Scholar
Soil Survey Staff. (2006). Keys to Soil Taxonomy, 10th edn. Washington, DC: USDA-Natural Resources Conservation Service.Google Scholar
Tomar, S. S., Tembe, G. P., Sharma, S. K., Bhadauria, U. P. S. & Tomar, V. S. (1996). Improvement of Physical Conditions of Black Soils in Madhya Pradesh. Jabalpur, India: J. N. K. K. V.Google Scholar
Van Genuchten, M. Th., Leij, F. J. & Lund, L. J. (1992). On estimating the hydraulic properties of unsaturated soils. In Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils: Proceedings of an International Workshop, Riverside, CA. 11–13 October 1989 (Eds van Genuchten, M. Th., Leij, F. J. & Lund, L. J.), pp. 114. Riverside, CA: University of California.Google Scholar
Vanderlinden, K., Giráldez, J. V. & Van Meirvenne, M. (2005). Soil water-holding capacity assessment in terms of the average annual water balance in southern Spain. Vadose Zone Journal 4, 317328.Google Scholar
Vereecken, H., Maes, J. & Feyen, J. (1990). Estimating unsaturated hydraulic conductivity from easily measured soil properties. Soil Science 149, 112.Google Scholar
Wagner, B., Tarnawski, V. R., Hennings, V., Muller, U., Wessolek, G. & Plagge, R. (2001). Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoderma 102, 275297.CrossRefGoogle Scholar
Wösten, J. H. M., Finke, P. A. & Jansen, M. J. W. (1995). Comparison of class and continuous pedotransfer functions to generate soil hydraulic characteristics. Geoderma 66, 227237.CrossRefGoogle Scholar
Wösten, J. H. M., Pachepsky, Y. A. & Rawls, W. J. (2001). Pedotransfer functions: Bridging gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology 251, 123150.Google Scholar