Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T17:50:15.785Z Has data issue: false hasContentIssue false

The potential for increasing the concentrations of micro-nutrients relevant to human nutrition in meat, milk and eggs

Published online by Cambridge University Press:  16 July 2010

J. A. ROOKE*
Affiliation:
SAC, West Mains Road, Edinburgh EH9 3JG, UK
J. F. FLOCKHART
Affiliation:
SAC, West Mains Road, Edinburgh EH9 3JG, UK
N. H. SPARKS
Affiliation:
SAC, West Mains Road, Edinburgh EH9 3JG, UK
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

A possible outcome of policies designed to reduce obesity in the human population and to mitigate greenhouse gas (GHG) emissions may be a decrease in human consumption of livestock products. However, livestock products currently make substantial contributions to intakes of specific micro-nutrients. Therefore, the present review examines the potential for increasing micro-nutrient concentrations of milk, muscle meats and eggs by nutritional and genetic means. Of the trace elements, copper (Cu), iron (Fe) and zinc (Zn) concentrations were largely resistant to manipulation by dietary means, but iodine (I) and selenium (Se) could be readily manipulated. Similarly, while α-tocopherol concentrations were readily manipulated, responses to dietary supplementation with retinol, folate and cobalamin were lower and riboflavin was resistant to dietary manipulation. There were differences between products in the ease with which composition could be manipulated: egg concentrations were most responsive followed by milk and muscle meats. However, livestock products with increased micro-nutrients concentrations can supply a substantial proportion of the daily reference nutrient intake.

Type
Animals
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ang, C. Y. W., Jung, H. C., Benoff, F. H. & Charles, O. W. (1984). Effect of feeding three levels of riboflavin, niacin and vitamin B6 to male chickens on the nutrient composition of broiler breast meat. Journal of Food Science 49, 590592.CrossRefGoogle Scholar
Apple, J. K., Wallis-Phelps, W. A., Maxwell, C. V., Rakes, L. K., Sawyer, J. T., Hutchison, S. & Fakler, T. M. (2007). Effect of supplemental iron on finishing swine performance, carcass characteristics, and pork quality during retail display. Journal of Animal Science 85, 737745.CrossRefGoogle ScholarPubMed
Arnett, A. M., Dikeman, M. E., Daniel, M. J., Olson, K. C., Jaeger, J. & Perrett, J. (2009). Effects of vitamin A supplementation and weaning age on serum and liver retinol concentrations, carcass traits, and lipid composition in market beef cattle. Meat Science 81, 596606.CrossRefGoogle ScholarPubMed
Ballet, N., Robert, J. C. & Williams, P. E. V. (2000). Vitamins in forages. In Forage Evaluation in Ruminant Nutrition (Eds Givens, D. I., Owen, E., Axford, R. F. E. & Omed, H. M.), pp. 399431. Wallingford, UK: CABI Publishing.CrossRefGoogle Scholar
Bennett, G. L. & Field, R. A. (1985). A note on the influence of breed and sire differences on iron and zinc concentration of lamb muscle. Animal Production 41, 421424.Google Scholar
Bierla, K., Dernovics, M., Vacchina, V., Szpunar, J., Bertin, G. & Lobinski, R. (2008). Determination of selenocysteine and selenomethionine in edible animal tissues by 2D size-exclusion reversed-phase HPLC-ICP MS following carbamidomethylation and proteolytic extraction. Analytical and Bioanalytical Chemistry 390, 17891798.CrossRefGoogle ScholarPubMed
Bohmer, B. M. & Roth-Maier, D. A. (2007). Effects of high-level dietary B-vitamins on performance, body composition and tissue vitamin contents of growing/finishing pigs. Journal of Animal Physiology and Animal Nutrition 91, 610.CrossRefGoogle ScholarPubMed
Bou, R., Guardiola, F., Tres, A., Barroeta, A. C. & Codony, R. (2004). Effect of dietary fish oil, alpha-tocopheryl acetate, and zinc supplementation on the composition and consumer acceptability of chicken meat. Poultry Science 83, 282292.CrossRefGoogle ScholarPubMed
Bou, R., Guardiola, F., Barroeta, A. C. & Codony, R. (2005). Effect of dietary fat sources and zinc and selenium supplements on the composition and consumer acceptability of chicken meat. Poultry Science 84, 11291140.CrossRefGoogle ScholarPubMed
Bou, R., Grimpa, S., Baucells, M. D., Codony, R. & Guardiola, F. (2006). Dose and duration effect of alpha-tocopheryl acetate supplementation on chicken meat fatty acid composition, tocopherol content, and oxidative status. Journal of Agricultural and Food Chemistry 54, 50205026.CrossRefGoogle ScholarPubMed
Bourre, J. M. & Galea, F. (2006). An important source of omega-3 fatty acids, vitamins D and E, carotenoids, iodine and selenium: a new natural multi-enriched egg. Journal of Nutrition Health and Aging 10, 371376.Google Scholar
Bunchasak, C. & Kachana, S. (2009). Dietary folate and vitamin B12 supplementation and consequent vitamin deposition in chicken eggs. Tropical Animal Health and Production 41, 15831589.CrossRefGoogle ScholarPubMed
Cairo, G., Bernuzzi, F. & Recalcati, S. (2006). A precious metal: iron, an essential nutrient for all cells. Genes and Nutrition 1, 2539.CrossRefGoogle ScholarPubMed
Ceballos, A., Sanchez, J., Stryhn, H., Montgomery, J. B., Barkema, H. W. & Wichtel, J. J. (2009). Meta-analysis of the effect of oral selenium supplementation on milk selenium concentration in cattle. Journal of Dairy Science 92, 324342.CrossRefGoogle ScholarPubMed
Chikunya, S., Demirel, G., Enser, M., Wood, J. D., Wilkinson, R. G. & Sinclair, L. A. (2004). Biohydrogenation of dietary n-3 PUFA and stability of ingested vitamin E in the rumen, and their effects on microbial activity in sheep. British Journal of Nutrition 91, 539550.CrossRefGoogle ScholarPubMed
Cho, H. W. & Ahn, B. H. (2006). Effects of dietary vitamin E levels on carcass characteristics, vitamin E concentration of longissimus muscle and lipid oxidation in Hanwoo steers. Journal of Animal Science and Technology 48, 827838.Google Scholar
Chowanadisai, W., Lonnerdal, B. & Kelleher, S. L. (2006). Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. Journal of Biological Chemistry 281, 3969939707.CrossRefGoogle ScholarPubMed
COMA (1991). Dietary Reference Values for Food, Energy and Nutrients for the United Kingdom. Report of the Panel on Dietary Reference Values, Committee on Medical Aspects of Food and Nutrition Policy. London: HMSO.Google Scholar
Cope, C. M., Mackenzie, A. M., Wilde, D. & Sinclair, L. A. (2009). Effects of level and form of dietary zinc on dairy cow performance and health. Journal of Dairy Science 92, 21282135.CrossRefGoogle ScholarPubMed
Cousins, R. J., Liuzzi, J. P. & Lichten, L. A. (2006). Mammalian zinc transport, trafficking, and signals. Journal of Biological Chemistry 281, 2408524089.CrossRefGoogle ScholarPubMed
Dannenberger, D., Reichardt, W., Danier, J., Nuernberg, K., Nuernberg, G. & Ender, K. (2007). Investigations on selected essential micronutrients in muscle of German pure and crossbred pigs. Fleischwirtschaft 87, 9093.Google Scholar
De La Fuente, J., Diaz, M. T., Alvarez, I., Lauzurica, S., Caneque, V. & Perez, C. (2007). Effect of dietary supplementation with vitamin E on characteristics of vacuum-packed lamb. Journal of the Science of Food and Agriculture 87, 651659.CrossRefGoogle Scholar
Debier, C. & Larondelle, Y. (2005). Vitamins A and E: metabolism, roles and transfer to offspring. British Journal of Nutrition 93, 153174.CrossRefGoogle Scholar
Fairweather-Tait, S. J. (2004). Iron nutrition in the UK: getting the balance right. Proceedings of the Nutrition Society 63, 519528.CrossRefGoogle ScholarPubMed
Folhoffer, A., Ferenci, P., Csak, T., Horvath, A., Hegedus, D., Firneisz, G., Osztovits, J., Kosa, J. P., Willheim-Polli, C., Szonyi, L., Abonyi, M., Lakatos, P. L. & Szalay, F. (2007). Novel mutations of the ATP7B gene among 109 Hungarian patients with Wilson's disease. European Journal of Gastroenterology and Hepatology 19, 105111.CrossRefGoogle ScholarPubMed
Food Standards Agency (2002). McCance and Widdowson's The Composition of Foods, 6th edn. Cambridge, UK: Royal Society of Chemistry.Google Scholar
Franke, B. M., Haldimann, M., Reimann, J., Baumer, B., Gremaud, G., Hadorn, R., Bosset, J. O. & Kreuzer, M. (2007). Indications for the applicability of element signature analysis for the determination of the geographic origin of dried beef and poultry meat. European Food Research and Technology 225, 501509.CrossRefGoogle Scholar
Franke, B. M., Haldimann, M., Gremaud, G., Bosset, J. O., Hadorn, R. & Kreuzer, M. (2008 a). Element signature analysis: its validation as a tool for geographic authentication of the origin of dried beef and poultry meat. European Food Research and Technology 227, 701708.CrossRefGoogle Scholar
Franke, K., Schone, F., Berk, A., Leiterer, M. & Flachowsky, G. (2008 b). Influence of dietary iodine on the iodine content of pork and the distribution of the trace element in the body. European Journal of Nutrition 47, 4046.CrossRefGoogle ScholarPubMed
Giguere, A., Girard, C. L. & Matte, J. J. (2008). Methionine, folic acid and vitamin B12 in growing-finishing pigs: impact on growth performance and meat quality. Archives of Animal Nutrition 62, 193206.CrossRefGoogle ScholarPubMed
Girard, C. L. & Matte, J. J. (2005). Folic acid and vitamin B-12 requirements of dairy cows: a concept to be revised. Livestock Production Science 98, 123133.CrossRefGoogle Scholar
Girard, C. L., Lapierre, H., Matte, J. J. & Lobley, G. E. (2005). Effects of dietary supplements of folic acid and rumen-protected methionine on lactational performance and folate metabolism of dairy cows. Journal of Dairy Science 88, 660670.CrossRefGoogle ScholarPubMed
Girard, C. L., Berthiaume, R., Faucitano, L. & Lafreniere, C. (2007). Influence of beef production system on vitamin B12 concentrations in plasma and muscle. Canadian Journal of Animal Science 87, 277280.CrossRefGoogle Scholar
Girard, C. L., Santschi, D. E., Stabler, S. P. & Allen, R. H. (2009). Apparent ruminal synthesis and intestinal disappearance of vitamin B12 and its analogs in dairy cows. Journal of Dairy Science 92, 45244529.CrossRefGoogle ScholarPubMed
Givens, D. I., Allison, R. & Blake, J. S. (2003). Enhancement of oleic acid and vitamin E concentrations of bovine milk using dietary supplements of whole rapeseed and vitamin E. Animal Research 52, 531542.CrossRefGoogle Scholar
Goncalves, I. D. V., Goncalves, P. B. D., Da Silva, J. C., Portela, V. V., Borges, L. F. K., Oliveira, J. F. C. & Lovatto, P. A. (2008). Interaction between estrogen receptor and retinol-binding protein-4 polymorphisms as a tool for the selection of prolific pigs. Genetics and Molecular Biology 31, 481486.CrossRefGoogle Scholar
Graulet, B., Matte, J. J., Desrochers, A., Doepel, L., Palin, M. F. & Girard, C. L. (2007). Effects of dietary supplements of folic acid and vitamin B-12 on metabolism of dairy cows in early lactation. Journal of Dairy Science 90, 34423455.CrossRefGoogle ScholarPubMed
Hartmann, S., Eder, K. & Kirchgessner, M. (1994). Marginal copper and iron supply of pigs. 1. Influence on hematological parameters, enzymes and copper and iron concentrations in various tissues. Archives of Animal Nutrition-Archiv fur Tierernahrung 47, 91106.CrossRefGoogle Scholar
Hebert, K., House, J. D. & Guenter, W. (2005). Effect of dietary folic acid supplementation on egg folate content and the performance and folate status of two strains of laying hens. Poultry Science 84, 15331538.CrossRefGoogle ScholarPubMed
Henderson, L., Irving, K. & Gregory, J. (2002). The National Diet and Nutrition Survey: Adults Aged 19 to 64 Years. London: The Stationery Office.Google Scholar
Henry, P. R., Littell, R. C. & Ammerman, C. B. (1997). Effect of high dietary zinc concentration and length of zinc feeding on feed intake and tissue zinc concentration in sheep. Animal Feed Science and Technology 66, 237245.CrossRefGoogle Scholar
Hernández, A., Pluske, J. R., D'Souza, D. N. & Mullan, B. P. (2008). Levels of copper and zinc in diets for growing and finishing pigs can be reduced without detrimental effects on production and mineral status. Animal 2, 17631771.CrossRefGoogle ScholarPubMed
Hogberg, A., Pickova, J., Babol, J., Andersson, K. & Dutta, P. C. (2002). Muscle lipids, vitamins E and A, and lipid oxidation as affected by diet and RN genotype in female and castrated male Hampshire crossbreed pigs. Meat Science 60, 411420.CrossRefGoogle Scholar
Hollo, G., Nuernberg, K., Hollo, I., Csapo, J., Seregi, J., Repa, I. & Ender, K. (2007). Effect of feeding on the composition of longissmus muscle of Hungarian Grey and Holstein Friesian bulls. III. Amino acid composition and mineral content. Archiv fur Tierzucht-Archives of Animal Breeding 50, 575586.CrossRefGoogle Scholar
Hoey, L., Mcnulty, H., McCANN, E. M. E., McCracken, K. J., Scott, J. M., Marc, B. B., Molloy, A. M., Graham, C. & Pentieva, K. (2009). Laying hens can convert high doses of folic acid added to the feed into natural folates in eggs providing a novel source of food folate. British Journal of Nutrition 101, 206212.CrossRefGoogle Scholar
House, J. D., Braun, K., Ballance, D. M., O'Connor, C. P. & Guenter, W. (2002). The enrichment of eggs with folic acid through supplementation of the laying hen diet. Poultry Science 81, 13321337.CrossRefGoogle ScholarPubMed
Irie, M., Inno, Y., Ishizuka, Y., Nishioka, T. & Morita, T. (2006). Vitamins A and E in carcass fat from Japanese Black and F1 cross cattle. Asian–Australasian Journal of Animal Sciences 19, 12661270.CrossRefGoogle Scholar
Jensen, S. K., Jensen, C., Jakobsen, K., Engberg, R. M., Andersen, J. O., Lauridsen, C., Sorensen, P., Skibsted, L. H. & Bertelsen, G. (1998). Supplementation of broiler diets with retinol acetate, beta-carotene or canthaxanthin: effect on vitamin status and oxidative status of broilers in vivo and on meat stability. Acta Agriculturae Scandinavica Section A – Animal Science 48, 2837.CrossRefGoogle Scholar
Juniper, D. T., Phipps, R. H., Ramos-Morales, E. & Bertin, G. (2008). Effect of dietary supplementation with selenium-enriched yeast or sodium selenite on selenium tissue distribution and meat quality in beef cattle. Journal of Animal Science 86, 31003109.CrossRefGoogle ScholarPubMed
Kessler, J., Morel, I., Dufey, P. A., Gutzwiller, A., Stern, A. & Geyer, H. (2003). Effect of organic zinc sources on performance, zinc status and carcass, meat and claw quality in fattening bulls. Livestock Production Science 81, 161171.CrossRefGoogle Scholar
King, J. C., Shames, D. M. & Woodhouse, L. R. (2000). Zinc homeostasis in humans. Journal of Nutrition 130, 1360S1366S.CrossRefGoogle ScholarPubMed
Knowles, S. O., Grace, N. D., Knight, T. W., Mcnabb, W. C. & Lee, J. (2006). Reasons and means for manipulating the micronutrient composition of milk from grazing dairy cattle. Animal Feed Science and Technology 131, 154167.CrossRefGoogle Scholar
Lawrie, R. A. & Ledward, D. A. (2006). Lawrie's Meat Science. Cambridge: Woodhead Publishing Limited.CrossRefGoogle Scholar
Lee, J., Treloar, B. P. & Grace, N. D. (1994). Metallothionein and trace-element metabolism in sheep tissues in response to high and sustained zinc dosages. 2. Expression of metallothionein m-RNA. Australian Journal of Agricultural Research 45, 321332.CrossRefGoogle Scholar
Leeson, S. (2009). Copper metabolism and dietary needs. World's Poultry Science Journal 65, 353366.CrossRefGoogle Scholar
Leeson, S. & Caston, L. J. (2003). Vitamin enrichment of eggs. Journal of Applied Poultry Research 12, 2426.CrossRefGoogle Scholar
Lu, Y., Suliman, S., Hansen, H. R. & Feldmann, J. (2006). Iodine excretion and accumulation in seaweed-eating sheep from Orkney, Scotland. Environmental Chemistry 3, 338344.CrossRefGoogle Scholar
Mahan, D. C. & Parrett, N. A. (1996). Evaluating the efficacy of selenium-enriched yeast and sodium selenite on tissue selenium retention and serum glutathione peroxidase activity in grower and finisher swine. Journal of Animal Science 74, 29672974.CrossRefGoogle ScholarPubMed
Mahan, D. C., Cline, T. R. & Richert, B. (1999). Effects of dietary levels of selenium-enriched yeast and sodium selenite as selenium sources fed to growing-finishing pigs on performance, tissue selenium, serum glutathione peroxidase activity, carcass characteristics, and loin quality. Journal of Animal Science 77, 21722179.CrossRefGoogle ScholarPubMed
Malcolm-Callis, K. J., Duff, G. C., Gunter, S. A., Kegley, E. B. & Vermeire, D. A. (2000). Effects of supplemental zinc concentration and source on performance, carcass characteristics, and serum values in finishing beef steers. Journal of Animal Science 78, 28012808.CrossRefGoogle ScholarPubMed
McCann, M. E. E., McCracken, K. J., Hoey, L., Pentieva, K., McNulty, H. & Scott, J. L. (2004). Effect of dietary folic acid supplementation on the folate content of broiler chicken meat. British Poultry Science 45, S65S66.CrossRefGoogle ScholarPubMed
Meyer, U., Weigel, K., Schone, F., Leiterer, M. & Flachowsky, G. (2008). Effect of dietary iodine on growth and iodine status of growing fattening bulls. Livestock Science 115, 219225.CrossRefGoogle Scholar
Miranda, M., Cruz, J. M., Lopez-Alonso, M. & Benedito, J. L. (2006). Variations in liver and blood copper concentrations in young beef cattle raised in north-west Spain: associations with breed, sex, age and season. Animal Science 82, 253258.CrossRefGoogle Scholar
Morel, I. (2007). Dairy cow feeding and folic acid in milk. Agrarforschung 14, 490495.Google Scholar
Morel, P. C. H., Janz, J. A. M., Zou, M., Purchas, R. W., Hendriks, W. H. & Wilkinson, B. H. P. (2008). The influence of diets supplemented with conjugated linoleic acid, selenium, and vitamin E, with or without animal protein, on the composition of pork from female pigs. Journal of Animal Science 86, 11451155.CrossRefGoogle ScholarPubMed
Naber, E. C. & Squires, M. W. (1993). Vitamin profiles of eggs as indicators of nutritional-status in the laying hen-diet to egg transfer and commercial flock survey. Poultry Science 72, 10461053.CrossRefGoogle Scholar
Newcom, D. W., Stalder, K. J., Baas, T. J., Goodwin, R. N., Parrish, F. C. & Wiegand, B. R. (2004). Breed differences and genetic parameters of myoglobin concentration in porcine longissimus muscle. Journal of Animal Science 82, 22642268.CrossRefGoogle ScholarPubMed
O'Sullivan, M. G., Byrne, D. V., Stagsted, J., Andersen, H. J. & Martens, M. (2002). Sensory colour assessment of fresh meat from pigs supplemented with iron and vitamin E. Meat Science 60, 253265.CrossRefGoogle ScholarPubMed
Olivares, A., Rey, A. I., Daza, A. & Lopez-Bote, C. J. (2009). High dietary vitamin A interferes with tissue α-tocopherol concentrations in fattening pigs: a study that examines administration and withdrawal times. Animal 3, 12641270.CrossRefGoogle ScholarPubMed
Ortigues-Marty, I., Micol, D., Prache, S., Dozias, D. & Girard, C. L. (2005). Nutritional value of meat: the influence of nutrition and physical activity on vitamin B12 concentrations in ruminant tissues. Reproduction, Nutrition, Development 45, 453467.CrossRefGoogle ScholarPubMed
Paik, I., Lee, H. & Park, S. (2009). Effects of organic iron supplementation on the performance and iron content in the egg yolk of laying hens. Journal of Poultry Science 46, 198202.CrossRefGoogle Scholar
Park, S. W., Namkung, H., Ahn, H. J. & Paik, I. K. (2004). Production of iron enriched eggs of laying hens. Asian-Australasian Journal of Animal Sciences 17, 17251728.CrossRefGoogle Scholar
Patra, R. C., Swarup, D., Kumar, P., Nandi, D., Naresh, R. & Ali, S. L. (2008). Milk trace elements in lactating cows environmentally exposed to higher level of lead and cadmium around different industrial units. Science of the Total Environment 404, 3643.CrossRefGoogle ScholarPubMed
Payne, R. L., Lavergne, T. K. & Southern, L. L. (2005). Effect of inorganic versus organic selenium on hen production and egg selenium concentration. Poultry Science 84, 232237.CrossRefGoogle ScholarPubMed
Pesti, G. M. & Bakalli, R. I. (1998). Studies on the effect of feeding cupric sulfate pentahydrate to laying hens on egg cholesterol content. Poultry Science 77, 15401545.CrossRefGoogle ScholarPubMed
Pesut, O., Backovic, D. & Sobajic, S. (2005). Dietary selenium supplementation of pigs and broilers as a way of producing selenium enriched meat. Acta Veterinaria-Beograd 55, 483492.Google Scholar
Phipps, R. H., Grandison, A. S., Jones, A. K., Juniper, D. T., Ramos-Morales, E. & Bertin, G. (2008). Selenium supplementation of lactating dairy cows: effects on milk production and total selenium content and speciation in blood, milk and cheese. Animal 2, 16101618.CrossRefGoogle ScholarPubMed
Poto, A., Galian, M. & Peinado, B. (2007). Chato Murciano pig and its crosses with Iberian and large white pigs, reared outdoors. Comparative study of the carcass and meat characteristics. Livestock Science 111, 96103.CrossRefGoogle Scholar
Rayman, M. P. (2008). Food-chain selenium and human health: emphasis on intake. British Journal of Nutrition 100, 254268.CrossRefGoogle ScholarPubMed
Rayman, M. P., Infante, H. G. & Sargent, M. (2008). Food-chain selenium and human health: spotlight on speciation. British Journal of Nutrition 100, 238253.CrossRefGoogle ScholarPubMed
Reilly, C. (2004). The Nutritional Trace Metals. Oxford: Blackwell Science.CrossRefGoogle Scholar
Rojas, L. X., McDowell, L. R., Cousins, R. J., Martin, F. G., Wilkinson, N. S., Johnson, A. B. & Velasquez, J. B. (1995). Relative bioavailability of 2 organic and 2 inorganic zinc sources fed to sheep. Journal of Animal Science 73, 12021207.CrossRefGoogle Scholar
Roth-Maier, D. A. & Bohmer, B. M. (2007). Fortification of eggs with folic acid as a possible contribution to enhance the folic acid status of populations. International Journal for Vitamin and Nutrition Research 77, 297301.CrossRefGoogle ScholarPubMed
Santschi, D. E., Berthiaume, R., Matte, J. J., Mustafa, A. F. & Girard, C. L. (2005). Fate of supplementary B-vitamins in the gastrointestinal tract of dairy cows. Journal of Dairy Science 88, 20432054.CrossRefGoogle ScholarPubMed
Schone, F., Zimmermann, C., Quanz, G., Richter, G. & Leiterer, M. (2006). A high dietary iodine increases thyroid iodine stores and iodine concentration in blood serum but has little effect on muscle iodine content in pigs. Meat Science 72, 365372.CrossRefGoogle ScholarPubMed
Schone, F., Leiterer, M., Lebzien, P., Bemmann, D., Spolders, M. & Flachowsky, G. (2009). Iodine concentration of milk in a dose-response study with dairy cows and implications for consumer iodine intake. Journal of Trace Elements in Medicine and Biology 23, 8492.CrossRefGoogle Scholar
Schwab, E. C., Schwab, C. G., Shaver, R. D., Girard, C. L., Putnam, D. E. & Whitehouse, N. L. (2006). Dietary forage and nonfiber carbohydrate contents influence B-vitamin intake, duodenal flow, and apparent ruminal synthesis in lactating dairy cows. Journal of Dairy Science 89, 174187.CrossRefGoogle ScholarPubMed
Scientific Advisory Committee on Nutrition (2005). Review of Dietary Advice on Vitamin A. Norwich: The Stationary Office. Available online at http://www.sacn.gov.uk/pdfs/sacn_vita_report.pdf (verified 10 June 2010).Google Scholar
Scientific Advisory Committee on Nutrition (2009). Iron and Health: Draft Report. London: SACN. Available online at http://www.sacn.gov.uk/reports_position_statements/reports/draft_iron_and_health_report_039scientific_consultation039_-_june_2009.html (verified 10 June 2010).Google Scholar
Scientific Committee for Animal Nutrition (2003). Opinion of the Scientific Committee for Animal Nutrition on the Use of Copper in Feedingstuffs. Brussels: European Commission. Available online at http://ec.europa.eu/food/fs/sc/scan/out115_en.pdf (verified 10 June 2010).Google Scholar
Seo, S. H., Lee, H. K., Lee, W. S., Shin, K. S. & Paik, I. K. (2008). The effect of level and period of Fe-methionine chelate supplementation on the iron content of boiler meat. Asian–Australasian Journal of Animal Sciences 21, 15011505.CrossRefGoogle Scholar
Sevcikova, S., Skrivan, M., Dlouha, G. & Koucky, M. (2006). The effect of selenium source on the performance and meat quality of broiler chickens. Czech Journal of Animal Science 51, 449457.CrossRefGoogle Scholar
Sharp, P. (2004). The molecular basis of copper and iron interactions. Proceedings of the Nutrition Society 63, 563569.CrossRefGoogle ScholarPubMed
Shaw, D. T., Rozeboom, D. W., Hill, G. M., Booren, A. M. & Link, J. E. (2002). Impact of vitamin and mineral supplement withdrawal and wheat middling inclusion on finishing pig growth performance, fecal mineral concentration, carcass characteristics, and the nutrient content and oxidative stability of pork. Journal of Animal Science 80, 29202930.CrossRefGoogle ScholarPubMed
Skrivan, M., Skrivanova, V. & Marounek, M. (2005). Effects of dietary zinc, iron, and copper in layer feed on distribution of these elements in eggs, liver, excreta, soil, and herbage. Poultry Science 84, 15701575.CrossRefGoogle ScholarPubMed
Skrivan, M., Simane, J., Dlouha, G. & Doucha, J. (2006 a). Effect of dietary sodium selenite, Se-enriched yeast and Se-enriched Chlorella on egg Se concentration, physical parameters of eggs and laying hen production. Czech Journal of Animal Science 51, 163167.CrossRefGoogle Scholar
Skrivan, M., Skrivanova, V. & Marounek, M. (2006 b). Effect of various copper supplements to feed of laying hens on Cu content in eggs, liver, excreta, soil, and herbage. Archives of Environmental Contamination and Toxicology 50, 280283.CrossRefGoogle ScholarPubMed
Standish, J. F., Ammerman, C. B., Simpson, C. F., Neal, F. C. & Palmer, A. Z. (1969). Influence of graded levels of dietary iron, as ferrous sulfate, on performance and tissue mineral composition of steers. Journal of Animal Science 29, 496503.CrossRefGoogle ScholarPubMed
Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M. & De Haan, C. (2006). Livestock's Long Shadow: Environmental Issues and Options. Rome: Food and Agricultural Organisation.Google Scholar
Surai, P. F. (2006). Selenium in Nutrition and Health. Nottingham: Nottingham University Press.Google Scholar
Suttle, N. F., Lewis, R. M. & Small, J. N. W. (2002). Effects of breed and family on rate of copper accretion in the liver of purebred Charollais, Suffolk and Texel lambs. Animal Science 75, 295302.CrossRefGoogle Scholar
Underwood, E. J. & Suttle, N. F. (1999). The Mineral Nutrition of Livestock. Wallingford, UK: CABI Publishing.CrossRefGoogle Scholar
Van Ravenswaay, R. O., Henry, P. R. & Ammerman, C. B. (2001). Effects of time and dietary iron on tissue iron concentration as an estimate of relative bioavailability of supplemental iron sources for ruminants. Animal Feed Science and Technology 90, 185198.CrossRefGoogle Scholar
Weiss, W. P., Smith, K. L., Hogan, J. S. & Steiner, T. E. (1995). Effect of forage to concentrate ratio on disappearance of vitamins A and E during in vitro ruminal fermentation. Journal of Dairy Science 78, 18371842.CrossRefGoogle Scholar
Wiener, G. (1979). Review of genetic-aspects of mineral metabolism with particular reference to copper in sheep. Livestock Production Science 6, 223232.CrossRefGoogle Scholar
Wilkinson, J. M., Hill, J. & Livesey, C. T. (2001). Accumulation of potentially toxic elements in the body tissues of sheep grazed on grassland given repeated applications of sewage sludge. Animal Science 72, 179190.CrossRefGoogle Scholar
Woolliams, J. A., Suttle, N. F., Wiener, G., Field, A. C. & Woolliams, C. (1982). The effect of breed of sire on the accumulation of copper in lambs, with particular reference to copper toxicity. Animal Production 35, 299307.Google Scholar
Woolliams, J. A., Woolliams, C., Suttle, N. F., Jones, D. G. & Wiener, G. (1986). Studies on lambs from lines genetically selected for low and high copper status. 2. Incidence of hypocuprosis on improved hill pasture. Animal Production 43, 303317.Google Scholar
World Health Organisation. (2003). Obesity and Overweight. Geneva, Switzerland: World Health Organisation. Available online at http://www.who.int/dietphysicalactivity/media/en/gsfs_obesity.pdf (verified 10 June 2010).Google Scholar
Yalcin, S., Kahraman, Z., Yalcin, S., Yalcin, S. S. & Dedeoglu, H. E. (2004). Effects of supplementary iodine on the performance and egg traits of laying hens. British Poultry Science 45, 499503.CrossRefGoogle ScholarPubMed
Zembayashi, M., Lunt, D. K. & Smith, S. B. (1999). Dietary tea reduces the iron content of beef. Meat Science 53, 221226.CrossRefGoogle ScholarPubMed
Zhan, X. A., Wang, M., Zhao, R. Q., Li, W. F. & Xu, Z. R. (2007). Effects of different selenium source on selenium distribution, loin quality and antioxidant status in finishing pigs. Animal Feed Science and Technology 132, 202211.CrossRefGoogle Scholar
Supplementary material: File

Rooke supplementary material

Appendix.doc

Download Rooke supplementary material(File)
File 650.2 KB