Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T10:59:47.388Z Has data issue: false hasContentIssue false

Photochemical quenching of chlorophyll fluorescence and drought tolerance in different durum wheat (Triticum durum) cultivars

Published online by Cambridge University Press:  27 March 2009

Z. Flagella
Affiliation:
Istituto di Produzioni e Preparazioni Alimentari, Università di Bari, Sede di Foggia, Via Napoli 25, 71100 Foggia, Italy
D. Pastore
Affiliation:
Dipartimento di Scienze Animali, Vegetali e dell' Ambiente, Università del Molise, 86100 Campobasso, Italy
R. G. Campanile
Affiliation:
Istituto Sperimentale per la Cerealicoltura, SS 16 Km 675, 71100 Foggia, Italy
N. Di Fonzo
Affiliation:
Istituto Sperimentale per la Cerealicoltura, SS 16 Km 675, 71100 Foggia, Italy

Summary

The aim of this study was to identify a fluorescence parameter whose estimate could be used reliably for a drought tolerance test in durum wheat (Triticum durum). Twenty-five cultivars were grown in a glasshouse over two seasons (1987/88 and 1988/89) at Foggia, Southern Italy. Photochemical and non-photochemical quenching (qQ and qE), the half time of fluorescence decay (tP½) and the initial slope of fluorescence decay (ISPS) were measured on control and dehydrated pre-darkened excised leaves; qQ and qE were measured twice: first at 14 s after actinic illumination and second at the steady state.

No great difference in qQ and qE was apparent between control and dehydrated leaves at the steady state; however, at 14 s after illumination there was a decrease in qQ and in ISPS and an increase in tP½ in dehydrated leaves. The predictive capability of fluorescence parameters was assessed by comparison with a yield-based drought susceptibility index (DSI). The percentage decrease in qQ at 14 s showed the highest correlation with DSI (r = 0·75, significant at P < 0·001), so it may be considered a good indicator of drought tolerance in durum wheat. Results obtained at different developmental stages with different fluorescence levels (Fo, P and Fm) and parameters (qQ, qE and tP½) indicated that for maximum reliability the test must be applied at the vegetative phase.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annuario Statistico Italiano, ISTAT (1989), p. 33. Rome: Italian Statistical Institute.Google Scholar
Bilger, W. & Schreiber, U. (1986). Energy-dependent quenching of dark-level chlorophyll fluorescence in intact leaves. Photosynthesis Research 10, 303308.CrossRefGoogle ScholarPubMed
Blum, A. (Ed.) (1988). Selection criteria. In Plant Breeding for Stress Environments, pp. 7178. Boca Raton, Florida: CRC Press.Google Scholar
D'Ambrosio, N., Rascio, A., Massacci, A. & Di Marco, G. (1988). Fluorescence quenching and gas-exchange in water stressed hard wheat. In The Future of Cereals for Human Feeding and Development of Bioteclmological Research (Ed. Wittmer, G.), pp. 277286. Foggia, Italy: Leone Grafiche.Google Scholar
Di Marco, G., Massacci, A. & Gabrielli, R. (1988). Drought effects on photosynthesis and fluorescence in hard wheat cultivars grown in the field. Physiologia Plantarum 74, 385390.CrossRefGoogle Scholar
Fischer, R. A. & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research 29, 897912.CrossRefGoogle Scholar
Fischer, R. A. & Wood, J. T. (1979). Drought resistance in spring wheat cultivars. III. Yield associations with morpho-physiological traits. Australian Journal of Agricultural Research 30, 10011020.CrossRefGoogle Scholar
Flagella, Z., Pastore, D., Campanile, R. G. & Di Fonzo, N. (1992). Near infrared reflectance: a new approach for evaluating drought resistance in durum wheat. Journal of Genetics and Breeding 46, 2128.Google Scholar
Genty, B., Briantais, J. M. & Baker, N. R. (1989). The relationship between the quantum yield of photosynthesis electron transport and quenching of chlorophyll fluorescence. Biochimica el Biophysica Acta 990, 8792.CrossRefGoogle Scholar
Govindjee Downton, W. J. S., Fork, D. C. & Armond, P. A. (1981). Chlorophyll a fluorescence transient as an indicator of water potential of leaves. Plant Science Utters 20, 191194.Google Scholar
Haitz, M. & Lichtenthaler, H. K. (1988). The measurement of RFD-values as plant vitality indices with the portable field chlorophyll fluorometer and the PAM-fluorometer. In Applications of Chlorophyll Fluorescence (Ed. Lichtenthaler, H. K.), pp. 249254. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
Havaux, M. & Lannoye, R. (1985). Drought resistance of hard wheat cultivars measured by a rapid chlorophyll fluorescence test. Journal of Agricultural Science, Cambridge 104, 501504.CrossRefGoogle Scholar
Havaux, M., Ernez, M. & Lannoye, R. (1988 a). Sélection des variétés de blé dur (Triticum durum Desf.) et de blé tendre (Triticum aestivwm L.) adaptées à la sécheresse par la mesure de l'extinction de la fluorescence de la chlorophylle in vivo. Agronomie 3, 193199.CrossRefGoogle Scholar
Havaux, M., Ernez, M. & Lannoye, R. (1988 b). Correlation between heat tolerance and drought tolerance in cereals demonstrated by rapid chlorophyll fluorescence tests. Journal of Plant Physiology 133, 555560.CrossRefGoogle Scholar
Krause, G. H. & Weis, F. (1991). Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology 42, 313349.CrossRefGoogle Scholar
Lichtenthaler, H. K. (1988). In vivo chlorophyll fluorescence as a tool for stress detection in plants. In Applications of Chlorophyll Fluorescence (Ed. Lichtenthaler, H. K.), pp. 129142. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
Lichtenthaler, H. K. & Rinderle, U. (1988). Role of chlorophyll fluorescence in the detection of stress condition in plants. CRC Critical Reviews in Analytical Chemistry 19, Supplement I: S29–S85.CrossRefGoogle Scholar
Mariani, B. M. & Novaro Manmana, P. (1987). Il grano duro nel centro-sud: risultati delle prove di confronto varietale nell'annata 1986–'87 e comportamento delle varieta che hanno concluso il ciclo di prove. L'Informatore Agrario 87, 3538.Google Scholar
Ögren, E. (1990). Evaluation of chlorophyll fluorescence as a probe for drought stress in willow leaves. Plant Physiology 93, 12801285.CrossRefGoogle ScholarPubMed
Ögren, E. & Öquist, G. (1985). Effects of drought on photosynthesis, chlorophyll fluorescence and photoinhibition susceptibility in intact willow leaves. Planta 166, 380388.CrossRefGoogle ScholarPubMed
Pastore, D., Flagella, Z., Campanile, R. G. & Wittmer, G. (1988 a). Kautsky effect as drought tolerance indicator in durum wheat (Triticum durum Desf). I. Variations of fluorescence induction curve following dehydration; probing the test. In The Future of Cereals for Human Feeding and Development of Biotechnological Research (Ed. Wittmer, G.), pp. 265275. Foggia, Italy: Leone Grafiche.Google Scholar
Pastore, D., Flagella, Z., Campanile, R. G. & Wittmer, G. (1988 b). Kautsky effect as drought tolerance indicator in durum wheat (Triticum durum Desf.). II. Intrinsic variation of fluorescence induction curve: day-night and phenological changes. In The Future of Cereals for Human Feeding and Development of Biotechnological Research (Ed. Wittmer, G.), pp. 277285. Foggia, Italy: Leone Grafiche.Google Scholar
Pastore, D., Flagella, Z., Rascio, A., Cedola, M. C. & Wittmer, G. (1989). Field studies on chlorophyll fluorescence as drought tolerance test in Triticum durum Desf. genotypes. Journal of Genetics and Breeding 43, 4551.Google Scholar
Rascio, A., Cedola, M. C., Toponi, M., Flagella, Z. & Wittmer, G. (1990). Leaf morphology and water status changes in Triticum durum under water stress. Physiologia Plantarum 78, 462467.CrossRefGoogle Scholar
Scholander, P. F., Hammel, H. T., Brastreet, E. D. & Hemmingsen, E. A. (1965). Sap pressure in vascular plants. Science 148, 339346.CrossRefGoogle ScholarPubMed
Schreiber, U. & Bilger, W. (1987). Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. In Plant Response to Stress (Eds Tenhunen, J. D., Catarino, F. M., Lange, O. L. & Oechel, W. C.), pp. 2753. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Schreiber, U., Schliwa, U. & Bilger, W. (1986). Continuous recording of photochemical and non-photochemical fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research 10, 5162.CrossRefGoogle ScholarPubMed
Sharkey, T. D. & Badger, M. R. (1982). Effects of water stress on photosynthetic electron transport, photophosphorylation and metabolite levels of Xanthium strumarium mesophyll cells. Planta 156, 199206.CrossRefGoogle ScholarPubMed
Stuhlfauth, T., Sültemeyer, D. F., Weinz, S. & Fock, H. P. (1988). Fluorescence quenching and gas exchange in a water stressed C3 plant, Digitalis lanata. Plant Physiology 86, 246250.CrossRefGoogle Scholar