Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T02:29:33.608Z Has data issue: false hasContentIssue false

Phenological and aerobiological study of vineyards in the Montilla-Moriles PDO area, Cordoba, southern Spain

Published online by Cambridge University Press:  15 October 2018

M. Martínez-Bracero*
Affiliation:
Botany, Ecology and Plant Physiology, Córdoba University, Celestino mutis building 3rd floor Campus de Rabanales 14071 Córdoba, Cordoba, Spain
P. Alcázar
Affiliation:
Botany, Ecology and Plant Physiology, Córdoba University, Celestino mutis building 3rd floor Campus de Rabanales 14071 Córdoba, Cordoba, Spain
M. J. Velasco-Jiménez
Affiliation:
Botany, Ecology and Plant Physiology, Córdoba University, Celestino mutis building 3rd floor Campus de Rabanales 14071 Córdoba, Cordoba, Spain
C. Calderón-Ezquerro
Affiliation:
Laboratorios de Citogenética y Mutagénesis Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, 04510 México city, DF, Mexico
C. Galán
Affiliation:
Botany, Ecology and Plant Physiology, Córdoba University, Celestino mutis building 3rd floor Campus de Rabanales 14071 Córdoba, Cordoba, Spain
*
Author for correspondence: Moisés Martínez-Bracero, E-mail: [email protected]

Abstract

Phenological and aerobiological research into major crops is of great value in adapting traditional processes to the new conditions prompted by global climate change. Data on flowering phenology and airborne pollen have also proved useful for harvest forecasting purposes. The current paper reports on an agrometeorological study carried out in the Montilla-Moriles Protected Designation of Origin area (Córdoba, southern Spain) in 2015 and 2016. The study focused on four grape cultivars produced at seven local vineyards (Pedro Ximénez, the most widely grown in the area; Verdejo; Muscat blanc à petits grains; and Chardonnay, which has been recently introduced). Phenological observations were performed on a weekly basis using the Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie scale adapted for grapevine. Airborne pollen concentrations were monitored using one Hirst-type volumetric sampler and seven passive samplers. Airborne pollen was mainly detected in vineyards during inflorescence emergence and flowering. Year-on-year differences in climatic conditions led to differences in airborne pollen levels. The main variables affecting pollen concentrations were dew point and temperature. The life-cycles recorded here were shorter than in temperate climates but longer than in tropical climates. In terms of flowering period, the cultivars studied here were classed as ‘early cultivars’. Data obtained using local passive samplers located directly in the vineyard confirmed that the airborne pollen concentrations recorded by the volumetric sampler were representative of the study area.

Type
Crops and Soils Research Paper
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcázar, P, García-Mozo, H, Trigo Mdel, M, Ruiz, L, González-Minero, FJ, Hidalgo, P, de la Guardia, CD and Galán, C (2011) Platanus pollen season in Andalusia (southern Spain): trends and modeling. Journal of Environmental Monitoring 13, 25022510.Google Scholar
Álvarez, M, Moreno, IM, Jos, ÁM, Cameán, AM and González, AG (2007) Study of mineral profile of Montilla-Moriles ‘fino’ wines using inductively coupled plasma atomic emission spectrometry methods. Journal of Food Composition and Analysis 20, 391395.Google Scholar
Belmonte, J, Canela, M and Guàrdia, R-A (2000) Comparison between categorical pollen data obtained by Hirst and Cour sampling methods. Aerobiologia 16, 177185.Google Scholar
Cunha, M, Abreu, I, Pinto, P and de Castro, R (2003) Airborne pollen samples for early-season estimates of wine production in a Mediterranean climate area of northern Portugal. American Journal of Enology and Viticulture 54, 189194.Google Scholar
Cunha, M, Ribeiro, H and Abreu, I (2016) Pollen-based predictive modelling of wine production: application to an arid region. European Journal of Agronomy 73, 4254.Google Scholar
Fernández-González, M, Escuredo, O, Rodríguez-Rajo, FJ, Aira, MJ and Jato, V (2011) Prediction of grape production by grapevine cultivar Godello in north-west Spain. Journal of Agricultural Science, Cambridge 149, 725736.Google Scholar
Fernández-González, M, Rodriguez-Rajo, FJ, Jato, V, Aira, MJ, Ribeiro, H, Oliveira, M and Abreu, I (2012) Forecasting ARIMA models for atmospheric vineyard pathogens in Galicia and Northern Portugal: Botrytis cinerea spores. Annals of Agricultural and Environmental Medicine 19, 255262.Google Scholar
Fernández-González, M, Rodríguez-Rajo, FJ, Escuredo, O and Aira, MJ (2013) Influence of thermal requirement in the aerobiological and phenological behavior of two grapevine varieties. Aerobiologia 29, 523535.Google Scholar
Galán, C, Vázquez, L, García-Mozo, H and Domínguez, E (2004) Forecasting olive (Olea europaea) crop yield based on pollen emission. Field Crops Research 86, 4351.Google Scholar
Galán, C, Cariñanos, P, Alcázar, P and Dominguez-Vilches, E (2007) Spanish Aerobiology Network (REA): Management and Quality Manual. Córdoba, Spain: Servicio de Publicaciones, Universidad de Córdoba.Google Scholar
Galán, C, Smith, M, Thibaudon, M, Frenguelli, G, Oteros, J, Gehrig, R, Berger, U, Clot, B and Brandao, R and EAS QC Group (2014) Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia 30, 385395.Google Scholar
Galán, C, Ariatti, A, Bonini, M, Clot, B, Crouzy, B, Dahl, A, Fernandez-González, D, Frenguelli, G, Gehrig, R, Isard, S, Levetin, E, Li, DW, Mandrioli, P, Rogers, CA, Thibaudon, M, Sauliene, I, Skjøth, C, Smith, M and Sofiev, M (2017) Recommended terminology for aerobiological studies. Aerobiologia 33, 293295.Google Scholar
Gris, EF, Burin, VM, Brighenti, E, Vieira, H and Bordignon-Luiz, MT (2010) Phenology and ripening of Vitis vinifera L. grape varieties in São Joaquim, southern Brazil: a new South American wine growing region. Ciencia e Investigación Agraria (International Journal of Agriculture and Natural Resources) 37, 6175.Google Scholar
Hidalgo, L (2002) Tratado de Viticultura General. Madrid, Spain: Mundi-Prensa.Google Scholar
Hirst, JM (1952) An automatic volumetric spore trap. Annals of Applied Biology 39, 257265.Google Scholar
Humble, BC and Metz, GM (2017) Clearing the air: a retrospective observational study of rainfall and pollen count data in Oklahoma City, OK (abstract). Journal of Allergy and Clinical Immunology 139, Supplement, AB122.Google Scholar
Jones, GV and Davis, RE (2000) Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. American Journal of Enology and Viticulture 51, 249261.Google Scholar
Kamel, A (1959) Estudio Sobre la Sexualidad de las Uvas de Mesa en España. Madrid, Spain: Instituto Nacional de Investigaciones Agronómicas.Google Scholar
Kelly, HY, Dufault, NS, Walker, DR, Isard, SA, Schneider, RW, Giesler, LJ, Wright, DL, Marois, JJ and Hartman, GL (2015) From select agent to an established pathogen: the response to Phakopsora pachyrhizi (soybean rust) in North America. Phytopathology 105, 905916.Google Scholar
Kishino, AY and Marur, IPH (2007) Factores climáticos e o desenvolvimento da videira. In Kishino, AY, de Carvalho, SC and Roberto, SR (eds), Viticultura Tropical: o Sistema de Producao do Parana. Londrina, Brazil: IAPAR, pp. 5986.Google Scholar
Lorenz, DH, Eichhorn, KW, Bleiholder, H, Klose, R, Meier, U and Weber, E (1994) Phänologische entwicklungsstadien der weinrebe (Vitis vinifera L. ssp. vinifera). Codierung und beschreibung nach der erweiterten BBCH-Skala. Wein-Wissenschaft 49, 6670.Google Scholar
Mandelli, F, Tonietto, J, Camargo, UA and Czermainski, ABC (2004) Fenologia e necessidades térmicas da videira na Serra Gaúcha. In XVIII Congresso Brasileiro de Fruticultura. Florianópolis, Brazil: Sociedade Brasileira de Fruticultura. CD-ROM.Google Scholar
Martínez-Bracero, M, Alcázar, P, de la Guardia, CD, González-Minero, FJ, Ruiz, L, Trigo Pérez, MM and Galán, C (2015) Pollen calendars: a guide to common airborne pollen in Andalusia. Aerobiologia 31, 549557.Google Scholar
Meier, U (1997) Growth Stages of Mono- and Dicotyledonous Plants. Biologische Bundesanstalt für Land-und Forstwirtschaft BBCH-Monograph. Berlin, Germany: Wissenschafts-Verlag.Google Scholar
Ocete, R, Cantos, M, López-Gallardo, A, Pérez-Troncoso, A, Lara, M, Failla, O, Ferragut, FJ and Liñán, J (2007) Caracterización y conservación del recurso fitogenético vid silvestre en Andalucía. In Consejería de Medio Ambiente Junta Andalucía. Sevilla, Spain: Falcor.Google Scholar
OIV (2015) Compendio de Métodos Internacionales de Análisis de los Vinos y Mostos. Paris, France: OIV.Google Scholar
Oteros, J, Orlandi, F, García-Mozo, H, Aguilera, F, Dhiab, AB, Bonofiglio, T, Abichou, M, Ruiz-Valenzuela, L, Mar del Trigo, M, de la Guardia, CD, Domínguez-Vilches, E, Msallem, M, Fornaciari, M and Galán, C (2014) Better prediction of Mediterranean olive production using pollen-based models. Agronomy for Sustainable Development 34, 685694.Google Scholar
Parker, A, de Cortázar-Atauri, IG, Chuine, I, Barbeau, G, Bois, B, Boursiquot, J-M, Cahurel, J-Y, Claverie, M, Dufourcq, T, Gény, L, Guimberteau, G, Hofmann, RW, Jacquet, O, Lacombe, T, Monamy, C, Ojeda, H, Panigai, L, Payan, J-C, Lovelle, BR, Rouchaud, E, Schneider, C, Spring, J-L, Storchi, P, Tomasi, D, Trambouze, W, Trought, M and van Leeuwen, C (2013) Classification of varieties for their timing of flowering and veraison using a modelling approach: a case study for the grapevine species Vitis vinifera L. Agricultural and Forest Meteorology 180, 249264.Google Scholar
Pedro Júnior, MJ and Sentelhas, PC (2003) Clima e produção. In Pommer, CV (ed.) Uva: Tecnologia de Produção, Pós-Colheita, Mercado. Porto Alegre: Cinco Continentes, pp. 63107.Google Scholar
Piña, S and Bautista, D (2004) Ciclo fenológico de cultivares de vid (Vitis vinifera L.) para mesa en condiciones tropicales. Bioagro 16, 915.Google Scholar
R Core Team (2014) R: a Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Ribeiro, H, Cunha, M and Abreu, I (2003) Airborne pollen concentration in the region of Braga, Portugal, and its relationship with meteorological parameters. Aerobiologia 19, 2127.Google Scholar
Sato, AJ, Jubileu, BS, de Assis, AM and Roberto, SR (2011) Phenology, production and must compounds of ‘Cabernet Sauvignon’ and ‘Tannat’ grapevines in subtropical climate. Revista Brasileira de Fruticultura 33, 491499.Google Scholar
Stein, AF, Draxler, RR, Rolph, GD, Stunder, BJ, Cohen, MD and Ngan, F (2015) NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society 96, 20592077.Google Scholar
Velasco-Jiménez, MJ, Alcázar, P, Valenzuela, LR, Gharbi, D, de la Guardia, CD and Galán, C (2018) Pinus pollen season trend in South Spain. Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology 152, 657665.Google Scholar
West, JS and Kimber, RBE (2015) Innovations in air sampling to detect plant pathogens. Annals of Applied Biology 166, 417.Google Scholar