Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T21:05:57.306Z Has data issue: false hasContentIssue false

Optimal renewal interval for malting barley seed

Published online by Cambridge University Press:  04 November 2015

S. OVASKA*
Affiliation:
Natural Resources Institute Finland (Luke), Economics and Society, FI-00790 Helsinki, Finland
S. MYYRÄ
Affiliation:
Natural Resources Institute Finland (Luke), Economics and Society, FI-00790 Helsinki, Finland
J.K. NIEMI
Affiliation:
Natural Resources Institute Finland (Luke), Economics and Society, FI-00790 Helsinki, Finland
P. PELTONEN-SAINIO
Affiliation:
Natural Resources Institute Finland (Luke), Natural Resources and Bioproduction, FI-31600 Jokioinen, Finland
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The present study explored the optimal long-term seed renewal strategy for malting barley for use either of farm-saved seed (FSS) or commercially certified seed (CCS). The dynamic optimization problem was solved by a dynamic programming routine with known parameters for one-period returns and transition equations. The model parameters represented Finnish farm-level returns and costs, as well as genetic improvements in barley yield potential. The results suggested that there is a farm-level economic incentive not to use CCS every year, despite the higher yield potential of CCS compared with FSS. The simulations highlighted the reasons behind the observed yield gap between genetic improvements in yield potential and attained yields at the farm scale.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bellman, R. (1957). Dynamic Programming. Princeton, NJ: Princeton University Press.Google Scholar
Cassman, K. G. & Harwood, R. R. (1995). The nature of agricultural systems: food security and environmental balance. Food Policy 20, 439454.Google Scholar
GAUSS (2009). GAUSS User Guide. Black Diamond, WA: Aptech Systems.Google Scholar
Luke (2015). Crop Production Statistics. Helsinki: Natural Resources Institute Finland (Luke). Available from http://stat.luke.fi/en/crop-production-statistics (accessed on 25 August 2015).Google Scholar
Niemi, J. & Ahlstedt, J. (2010). Finnish Agriculture and Rural Industries 2010. Helsinki: MTT Economic Research. Agrifood Research Finland.Google Scholar
Peltonen-Sainio, P. & Jauhiainen, L. (2014). Lessons from the past in weather variability: sowing to ripening dynamics and yield penalties for northern agriculture from 1970 to 2012. Regional Environmental Change 14, 15051516.Google Scholar
Peltonen-Sainio, P., Jauhiainen, L. & Laurila, I. P. (2009). Cereal yield trends in northern European conditions: changes in yield potential and its realisation. Field Crops Research 110, 8590.Google Scholar
Peltonen-Sainio, P. & Rajala, A. (2014). Use of quality seed as a means to sustainably intensify northern European barley production. Journal of Agricultural Science, Cambridge 152, 93103.Google Scholar
Peltonen-Sainio, P., Rajala, A. & Jauhiainen, L. (2011). Hidden viability risks in the use of farm-saved small-grain seed. Journal of Agricultural Science, Cambridge 149, 713724.Google Scholar
Peltonen-Sainio, P., Salo, T., Jauhiainen, L., Lehtonen, H. & Sieviläinen, E. (2015). Static yields and quality issues: is the agri-environment program the primary driver? AMBIO: A Journal of the Human Environment 44, 544556.Google Scholar
Rajala, A., Niskanen, M., Isolahti, M. & Peltonen-Sainio, P. (2011). Seed quality effects on seedling emergence, plant establishment and grain yield in two-row barley. Agricultural and Food Science 20, 228234.Google Scholar
van Ittersum, M. K. & Cassman, K. G. (2013). Yield gap analysis – rationale, methods and applications – introduction to the special issue. Field Crops Research 143, 13.Google Scholar
van Ittersum, M. K., Cassman, K. G., Grassini, P., Wolf, J., Tittonell, P. & Hochman, Z. (2013). Yield gap analysis with local to global relevance – a review. Field Crops Research 143, 417.Google Scholar
van Wart, J., Kersebaum, K. C., Peng, S., Milner, M. & Cassman, K. G. (2013). Estimating crop yield potential at regional to national scales. Field Crops Research 143, 3443.Google Scholar
VYR (2012). Selvitys Sertifioidun Siemenen Käytön Lisäarvosta ja Vaikutuksesta Sadon Laatuun (Survey on use of Commercial Certified Seed, its Added Value and Effects on Yield and Quality). Helsinki: The Finnish Cereal Committee (VYR). Available from http://www.vyr.fi/www/fi/tuotanto_ja_viljelytietoa/raportteja/Loppuraportti_selvitys_sertifioidun_siemenen_kayt_MTK2011.pdf (accessed on 23 August 2015) (In Finnish).Google Scholar
VYR (2014). Kylvöalaennuste 2014 (Farmers’ Sowing plan Survey 2014). Helsinki: The Finnish Cereal Committee (VYR). Available from http://www.vyr.fi/www/fi/liitetiedostot/tuotanto_ja_viljelytietoa/kylvoalaennuste/VYR_kylvalaennuste_2014_I.pdf (accessed on 25 August 2015) (In Finnish).Google Scholar