Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T19:58:39.535Z Has data issue: false hasContentIssue false

Nitrogen use and food production in European regions from a global perspective

Published online by Cambridge University Press:  26 November 2013

H. J. M. VAN GRINSVEN*
Affiliation:
PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands
J. H. J. SPIERTZ
Affiliation:
Center for Crop System Analysis, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
H. J. WESTHOEK
Affiliation:
PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands
A. F. BOUWMAN
Affiliation:
PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands
J. W. ERISMAN
Affiliation:
Louis Bolk Institute for International Advice and Research on Sustainable Agriculture, Nutrition and Health Care, Driebergen, The Netherlands Free University Amsterdam, The Netherlands
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Current production systems for crops, meat, dairy and bioenergy in the European Union (EU) rely strongly on the external input of nitrogen (N). These systems show a high productivity per unit of land. However, the drawback is a complex web of N pollution problems contributing in a major way to degradation of ecosystems. European Union Directives and national policies have improved nutrient management and reduced fertilizer N use in most European countries, which has curbed the N pollution trends particularly in regions with high stocking rates of animals. However, improvement is slowing down and environmental targets for N are not within reach. Building on the 2011 European Nitrogen Assessment, the current paper reviews key features of the complex relationships between N use and food production in Europe in order to develop novel options for a more N-efficient, less N-polluting and secure European food system. One option is to relocate feed and livestock production from Northwestern to Central and Eastern Europe. This would allow a reduction of N rates and N pollution in cereal production in Northwest Europe by 30% (50 kg N/ha), while increasing total cereal production in Europe. Another option is a change towards legume-based cropping systems to produce animal feed, in order to decrease dependence on N fertilizer and feed imports. The greatest challenge for Europe is to decrease the demand for feed commodities, and thus for land and N, by a shift to more balanced (and healthier) diets with less animal protein. These drastic changes can be stimulated by targeted public–private research funding, while the actual implementation can be enhanced by smart payment schemes using, for example money from the Common Agricultural Policy, certification and agreements between stakeholders and players in the food and energy chain. Involving networks of consumers, producers and non-governmental organizations is critical. An effective strategy starts with convincing consumers with a Western diet to eat less meat and dairy by communicating the associated health benefits and smaller ecological footprints. Internalizing the cost of N pollution leading to increased prices for N-intensive food products may also enhance involvement of consumers and provide financial resources to compensate farmers for loss of income and extra costs for stricter N measures.

Type
Nitrogen Workshop Special Issue Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bellarby, J., Tirado, R., Leip, A., Weiss, F., Lesschen, J. P. & Smith, P. (2013). Livestock greenhouse gas emissions and mitigation potential in Europe. Global Change Biology 19, 318.Google Scholar
Bouwman, A. F., Beusen, A. H. W. & Billen, G. (2009). Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Global Biochemical Cycles 23, GB0A04. doi:10.1029/2009GB003576.Google Scholar
Bouwman, A. F., van Grinsven, J. J. M. & Eickhout, B. (2010). Consequences of the cultivation of energy crops for the global nitrogen cycle. Ecological Applications 20, 101109.Google Scholar
Bouwman, A. F., Klein Goldewijk, K., Van der Hoek, K. W., Beusen, A. H. W., Van Vuuren, D. P., Willems, W. J., Rufino, M. C. & Stehfest, E. (2011). Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. PNAS, doi:10.1073/pnas.1012878108.Google Scholar
Brink, C., van Grinsven, J. J. M., Jacobsen, B. H., Rabl, A., Gren, I.-M., Holland, M., Klimont, Z., Hicks, K., Brouwer, R., Dickens, R., Willems, J., Termansen, M., Velthof, G., Alkemade, R., van Oorschot, M. & Webb, J. (2011). Costs and benefits of nitrogen in the environment. In The European Nitrogen Assessment (Eds Sutton, M. A., Howard, C., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H. & Grizzetti, B.), pp. 513540. Cambridge, UK: Cambridge University Press.Google Scholar
Brisson, N., Gate, P., Gouache, D., Charmet, G., Oury, F-X. & Huard, F. (2010). Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Research 119, 201212.Google Scholar
Bruinsma, J. E. (2003). World Agriculture towards 2015/2030: An FAO Perspective. London: Earthscan Publications Ltd.Google Scholar
Bruinsma, J. E. (2009). The resource outlook to 2050: by how much do land, water and crops yields need to increase by 2050? In Proceedings of the Expert Meeting on How to Feed the World in 2050, 24–26 June 2009, FAO Headquarters, Rome (Ed. FAO), pp. 133. Available online from: http://www.fao.org/docrep/012/ak542e/ak542e00.htm (accessed 3 October 2013).Google Scholar
Butterbach-Bahl, K., Nemitz, E., Zaehle, S., Billen, G., Boeckx, P., Erisman, J. W., Garnier, J., Upstill-Goddard, R., Kreuzer, M., Oenema, O., Reis, S., Schaap, M., Simpson, D., De Vries, W., Winiwarter, W. & Sutton, M. A. (2011). Nitrogen as a threat to the European greenhouse balance. In The European Nitrogen Assessment (Eds Sutton, M. A., Howard, C., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H. & Grizzetti, B.), pp. 434462. Cambridge, UK: Cambridge University Press.Google Scholar
Cassman, K. G., Dobermann, A. R. & Walters, D. T. (2002). Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO 31, 132140.Google Scholar
Dixon, J., Braun, H. J., Kosina, P. & Crouch, J. (Eds.) (2009). Wheat Facts and Futures 2009. Mexico, DF: CIMMYT.Google Scholar
Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nature Geoscience 1, 636639.Google Scholar
Ewert, F., Rounsevell, M. D. A., Reginster, I., Metzger, M. J. & Leemans, R. (2005). Future scenarios of European agricultural land use I. Estimating changes in crop productivity. Agriculture, Ecosystems & Environment 107, 101116.Google Scholar
Fischer, G., van Velthuizen, H. T., Shah, M. M. & Nachtergaele, F. O. (2002). Global Agro-ecological Assessment for Agriculture in the 21st Century: Methodology and Results. IIASA Research Report RR-02-002. Laxenburg, Austria: IIASA.Google Scholar
Giller, K. E., Rowe, E. C., De Ridder, N. & Van Keulen, H. (2006). Resource use dynamics and interactions in the tropics: Scaling up in space and time. Agricultural Systems 88, 827.Google Scholar
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M. & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science 327, 812818.Google Scholar
González, C. A., Jakszyn, P., Pera, G., Agudo, A., Bingham, S., Palli, D., Ferrari, P., Boeing, H., del Giudice, G., Plebani, M., Carneiro, F., Nesi, G., Berrino, F., Sacerdote, C., Tumino, R., Panico, S., Berglund, G., Simán, H., Nyrén, O., Hallmans, G., Martinez, C., Dorronsoro, M., Barricarte, A., Navarro, C., Quirós, J. R., Allen, N., Key, T. J., Day, N. E., Linseisen, J., Nagel, G., Bergmann, M. M., Overvad, K., Jensen, M. K., Tjonneland, A., Olsen, A., Bueno-de-Mesquita, H. B., Ocke, M., Peeters, P. H. M., Numans, M. E., Clavel-Chapelon, F., Boutron-Ruault, M.-C., Trichopoulou, A., Psaltopoulou, T., Roukos, D., Lund, E., Hemon, B., Kaaks, R., Norat, T. & Riboli, E. (2006). Meat intake and risk of stomach and esophageal adenocarcinoma within the European prospective investigation into cancer and nutrition (EPIC). Journal of the National Cancer Institute 98, 345354.Google Scholar
Good, A. G. & Beatty, P. H. (2011). Fertilizing nature: a tragedy of excess in the commons. PLos Biology 9, e1001124. doi:10.1371/journal.pbio.1001124.Google Scholar
Goulding, K., Jarvis, S. & Whitmore, A. (2008). Optimizing nutrient management for farm systems. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 667680.Google Scholar
Gourdji, S. M., Mathews, K. L., Reynolds, M., Crossa, J. & Lobell, D. B. (2013). An assessment of wheat yield sensitivity and breeding gains in hot environments. Proceedings of the Royal Society B: Biological Sciences 280, 2012. doi:10.1098/rspb.2012.2190.Google Scholar
van Grinsven, H. J. M., ten Berge, H. F. M., Dalgaard, T., Fraters, B., Durand, P., Hart, A., Hofman, G., Jacobsen, B. H., Lalor, S. T. J., Lesschen, J. P., Osterburg, B., Richards, K. G., Techen, A.-K., Vertès, F., Webb, J. & Willems, W. J. (2012). Management, regulation and environmental impacts of nitrogen fertilization in Northwestern Europe under the Nitrates Directive; a benchmark study. Biogeosciences 9, 51435160.Google Scholar
van Grinsven, H. J. M., Holland, M., Jacobsen, B. H., Klimont, Z., Sutton, M. A. & Willems, W. J. (2013). Costs and benefits of nitrogen for Europe and implications for mitigation. Environmental Science & Technology 47, 35713579.Google Scholar
Grzebisz, W., Gaj, R., Sassenrath, G. F., & Halloran, J. M. (2012). Fertilizer use and wheat yield in Central and Eastern European countries from 1986 to 2005 and its implications for developing sustainable fertilizer management practices. Communications in Soil Science & Plant Analysis 43, 23582375.Google Scholar
Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R. & Meybeck, A. (2011). Global Food Losses and Food Waste: Extent, Causes and Prevention. Rome: FAO.Google Scholar
Hirel, B., Tétu, T., Lea, P. J. & Dubois, F. (2011). Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3, 14521485.Google Scholar
Ingram, J. (2008). Agronomist-farmer knowledge encounters: an analysis of knowledge exchange in the context of best management practices in England. Agriculture and Human Values 25, 405418.Google Scholar
Jensen, L. S., Schjoerring, J. K., Van Der Hoek, K. W., Poulsen, H. D., Zevenbergen, J. F., Palliere, C., Lammel, J., Brentrup, F., Jongbloed, A. W., Willems, W. J. & van Grinsven, J. J. M. (2011). Benefits of nitrogen for food, fibre and industrial production. In The European Nitrogen Assessment (Eds Sutton, M. A., Howard, C., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, H. & Grizzetti, B.), pp. 3261. Cambridge, UK: Cambridge University Press.Google Scholar
Kok, M. J. T., Bakkes, J. A., Eickhout, B., Manders, A. J. G., van Oorschot, M. M. P., van Vuuren, D. P., van Wees, M. & Westhoek, H. J. (2008). Lessons from Global Environmental Assessments. Bilthoven, The Netherlands: PBL-Netherlands Environmental Assessment Agency.Google Scholar
Ladha, J. K., Pathak, H., Krupnik, T. J., Six, J. & van Kessel, C. (2005). Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Advances in Agronomy 87, 85156.Google Scholar
Leach, A. M., Galloway, J. N., Bleeker, A., Erisman, J. W., Kohn, R. & Kitzes, J. (2012). A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environmental Development 1, 4066.Google Scholar
Lesschen, J. P., van den Berg, M., Westhoek, H. J., Witzke, H. P. & Oenema, O. (2011). Greenhouse gas emission profiles of European livestock sectors. Animal Feed Science & Technology 166, 1628.Google Scholar
Liu, X., He, P., Jin, J., Zhou, W., Sulewski, G. & Phillips, S. (2011). Yield gaps, indigenous nutrient supply, and nutrient use efficiency of wheat in China. Agronomy Journal 103, 14521463.Google Scholar
Nakakubo, T., Tokai, A. & Ohno, K. (2012). Comparative assessment of technological systems for recycling sludge and food waste aimed at greenhouse gas emissions reduction and phosphorus recovery. Journal of Cleaner Production 32, 157172.Google Scholar
Nishida, C., Uauy, R., Kumanyika, S. & Shetty, P. (2004). The Joint WHO/FAO Expert Consultation on diet, nutrition and the prevention of chronic diseases: process, product and policy implications. Public Health Nutrition 7, 245250.Google Scholar
Oenema, J., Van Ittersum, M. & Van Keulen, H. (2012). Improving nitrogen management on grassland on commercial pilot dairy farms in the Netherlands. Agriculture, Ecosystems & Environment 162, 116126.Google Scholar
Offermann, F. & Nieberg, H. (2000). Economic Performance of Organic Farms in Europe. Organic Farming in Europe: Economics and Policy, Vol. 5. Stuttgart, Germany: University of Hohenheim.Google Scholar
Olesen, J. E. & Bindi, M. (2002). Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy 16, 239262.Google Scholar
Oonincx, D. G. A. B. & de Boer, I. J. M. (2012). Environmental impact of the production of mealworms as a protein source for humans – a Life Cycle Assessment. PLoS ONE 7, e51145. doi:10.1371/journal.pone.0051145 Google Scholar
Oury, F-X., Godin, C., Malliard, A., Chassin, A., Gardet, O., Giraud, A., Heumez, E., Morlais, J-Y., Rolland, B., Rousset, M., Trottet, M., & Charmet, G. (2012). A study of genetic progress due to selection reveals a negative effect of climate change on bread wheat yield in France. European Journal of Agronomy 40, 2838.Google Scholar
Parr, M., Grossman, J. M., Reberg-Horton, S. C., Brinton, C. & Crozier, C. (2011). Nitrogen delivery from legume cover crops in no-till organic corn production. Agronomy Journal 103, 15781590.Google Scholar
Peltonen-Sainio, P. & Niemi, J. K. (2012). Protein crop production at the northern margin of farming: to boost, or not to boost. Agricultural & Food Science 21, 370383.Google Scholar
de Ponti, T., Rijk, B. & van Ittersum, M. K. (2012). The crop yield gap between organic and conventional agriculture. Agricultural Systems 108, 19.Google Scholar
Powell, J. M., Gourley, C. J. P., Rotz, C. A. & Weaver, D. M. (2010). Nitrogen use efficiency: A potential performance indicator and policy tool for dairy farms. Environmental Science & Policy 13, 217228.Google Scholar
Reynolds, M. P., Trethowan, R., Crossa, J., Vargas, M. & Sayre, K. D. (2002). Physiological factors associated with genotype by environment interaction in wheat. Field Crops Research 75, 139160.Google Scholar
Roberts, T. L. (2009 a). The role of fertilizer in growing the world's food. Better Crops 93, 1215.Google Scholar
Roberts, P. (2009 b). The End of Food. The Coming Crisis in the World Food Industry. London Evening Standard, 19 June 2008. London: Bloomsbury.Google Scholar
Schröder, J. J. & Sørensen, P. (2011). The Role of Mineral Fertilisers in Optimising the Use Efficiency of Manure and Land. Proceedings 701. Leek, UK: International Fertiliser Society.Google Scholar
Seufert, V., Ramankutty, N. & Foley, J. A. (2012). Comparing the yields of organic and conventional agriculture. Nature 485, 229232.Google Scholar
Sonneveld, M. P. W. & Bouma, J. (2003). Methodological considerations for nitrogen policies in the Netherlands including a new role of research. Environmental Science & Policy 6, 501511.Google Scholar
Spiertz, J. H. J. (2010). Nitrogen, sustainable agriculture and food security. A review. Agronomy and Sustainable Development 30, 4355.Google Scholar
Spiertz, J. H. J., Hamer, R. J., Xu, H., Primo-Martin, C., Don, C. & Van der Putten, P. E. L. (2006). Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits. European Journal of Agronomy 25, 8995.Google Scholar
Stehfest, E., Bouwman, A. F., van Vuuren, D. P., den Elzen, M. G J., Eickhout, B. & Kabat, P. (2009). Climate benefits of changing diet. Climatic Change 95, 83102.Google Scholar
Stehfest, E., van den Berg, M., Woltjer, G., Msangi, S. & Westhoek, H. (2013). Options to reduce the environmental effects of livestock production – comparison of two economic models. Agricultural Systems 114, 3853.Google Scholar
Sutton, M. A., Oenema, O., Erisman, J. W., Leip, A., van Grinsven, H. & Winiwarter, W. (2011 a). Too much of a good thing. Nature 472, 159161.Google Scholar
Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A., Grennfelt, P., van Grinsven, J. J. M. & Grizzetti, B. (2011 b). The European Nitrogen Assessment; Sources, Effects and Policy Perspectives. Cambridge, UK: Cambridge University Press.Google Scholar
Timsina, J., Jat, M. L. & Majumdar, K. (2010). Rice-maize systems of South Asia: current status, future prospects and research priorities for nutrient management. Plant & Soil 335, 6582.Google Scholar
Verkerk, M. C., Tramper, J., van Trijp, J. C. M. & Martens, D. E. (2007). Insect cells for human food. Biotechnology Advances 25, 198202.Google Scholar
de Vries, W., Leip, A., Reinds, G. J., Kros, J., Lesschen, J. P. & Bouwman, A. F. (2011 a). Comparison of land nitrogen budgets for European agriculture by various modeling approaches. Environmental Pollution 159, 32543268.Google Scholar
de Vries, W., Kros, J., Reinds, G. J. & Butterbach-Bahl, K. (2011 b). Quantifying impacts of nitrogen use in European agriculture on global warming potential. Current Opinion in Environmental Sustainability 3, 291302.Google Scholar
van Vuuren, D. P. & Faber, A. (2009). Growing Within Limits. A Report to the Global Assembly 2009 of the Club of Rome. Bilthoven, The Netherlands: PBL-Netherlands Environmental Assessment Agency.Google Scholar
Westhoek, H. J., Rood, G. A., van den Berg, M., Janse, J. H., Nijdam, D. S., Reudink, M. A. & Stehfest, E. E. (2011). The Protein Puzzle: The Consumption and Production of Meat, Dairy and Fish in the European Union. The Hague, The Netherlands: European PBL Netherlands Environmental Assessment Agency.Google Scholar