Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T11:12:51.616Z Has data issue: false hasContentIssue false

Multi-trait selection index and cluster analyses in Angus cattle

Published online by Cambridge University Press:  03 August 2021

G. M. Fernandes*
Affiliation:
Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900, Monte Alegre, Ribeirão Preto, SP, Brazil
R. P. Savegnago
Affiliation:
Departamento de Ciências Exatas, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, 14884-900, Jaboticabal, SP, Brazil
L. A. Freitas
Affiliation:
Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900, Monte Alegre, Ribeirão Preto, SP, Brazil
L. El Faro
Affiliation:
Instituto de Zootecnia, Centro APTA Bovinos de Corte, 14160-000, Sertãozinho, SP, Brazil
V. M. Roso
Affiliation:
Gensys Consultores Associados, 90680-000, Porto Alegre, RS, Brazil
C. C. P. de Paz
Affiliation:
Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14049-900, Monte Alegre, Ribeirão Preto, SP, Brazil Instituto de Zootecnia, Centro APTA Bovinos de Corte, 14160-000, Sertãozinho, SP, Brazil
*
Author for correspondence: G. M. Fernandes, E-mail: [email protected]

Abstract

In breeding programmes, the genetic selection process is based on the prediction of animal breeding values, and its results may vary according to the employed selection method. The current study developed an economic selection index for animals of the Angus breed; performed cluster analyses using the breeding values in order to evaluate the genetic profile of the animals candidates to selection, and compared the obtained results between the economic selection index and the cluster analyses. The evaluated traits included weaning weight, 18-month weight, scrotal circumference, fat thickness and ribeye area. Economic values were obtained using bioeconomic modelling, simulating a complete cycle production system of beef cattle breeds in Brazil, and the selection objective were the weaning rate and slaughter weight. The chosen selection index was composed of all of the traits used as selection criteria for the simulated production system. During the cluster analyses, the population was divided into two to four groups, in which the groupings containing potential animals were assessed. The animals of the grouping which was used for comparison with the selection index were identified, and most of the bulls that were included in the index were among the best in the analysed group. These results suggest that the cluster analyses can be used as a tool for the selection of animals to be used as parents for future generations.

Type
Animal Research Paper
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Bolsista de Produtividade do CNPq.

References

Amer, PR, Kemp, RA, Buchanan-Smith, JG, Fox, GC and Smith, C (1994) A bioeconomic model for comparing beef cattle genotypes at their optimal economic slaughter end point. Journal of Animal Science 72, 3850.CrossRefGoogle ScholarPubMed
Anualpec (2017). Anuário da Pecuária Brasileira, 22nd. São Paulo, SP, BR: Instituto FNP.Google Scholar
Araujo Neto, FR, Herrera, LGG, Ono, RK and Queiroz, SA (2012) Introdução ao melhoramento genético de bovinos de corte. In Queiroz, AS (ed.), Guaíba, RS, BR: Agrolivros, pp. 5563.Google Scholar
Bif (1996) Guidelines for Uniform Beef Improvement Programs. Raleigh: U. S. Dept. Agriculture, North Carolina State University.Google Scholar
Campos, GS, Braccini Neto, J, Oaigen, RP, Cardoso, FF, Cobuci, JA, Kern, EL, Campos, LT, Bertoli, CD and McManus, CM (2014) Bioeconomic model and selection indices in Aberdeen Angus cattle. Journal of Animal Breeding and Genetics 131, 305312.CrossRefGoogle ScholarPubMed
Cepea/Esalq (2018) Centro de estudos avançados em economia aplicada da Escola Superior de Agricultura “Luiz de Queiroz”. Available at http://www.cepea.esalq.usp.br (Accessed 23 January 2018).Google Scholar
Cruz, DAC, Savegnago, RP, Santana, ABB, Peixoto, MGCD, Bruneli, FAT and El Faro, L (2016) Análises de agrupamento dos valores genéticos para produção de leite e persistência da lactação em bovinos da raça Guzerá. Ciência Rural 46, 12811288.CrossRefGoogle Scholar
Devincenzi, T, Nabinger, C, Cardoso, FF, Nalério, ES, Carassai, IJ, Fedrigo, JK, Tarouco, JU and Cardoso, LL (2012) Carcass characteristics and meat quality of Aberdeen Angus steers finished on different pastures. Revista Brasileira de Zootecnia 41, 10511059.CrossRefGoogle Scholar
Euclides Filho, K (1999) Melhoramento genético animal no Brasil: fundamentos, história e importância. Campo Grande, MS, BR: Embrapa Gado de Corte.Google Scholar
Fernandes, GM, Savegnago, RP, El Faro, L, Roso, VM and Paz, CCP (2018) Economic values and selection index in different Angus-Nellore cross-bred production systems. Journal of Animal Breeding and Genetics 135, 208220.CrossRefGoogle ScholarPubMed
Groen, AF, Steine, T, Colleau, JJ, Pedersen, J, Pribyl, J and Reinsch, N (1997) Economic values in dairy cattle breeding, with special reference to functional traits. Report of an EAAP-working group. Livestock Production Science 49, 121.CrossRefGoogle Scholar
Haberland, AM, Pimentel, EC, Ytournel, F, Erbe, M and Simianer, H (2013) Interplay between heritability, genetic correlation and economic weighting in a selection index with and without genomic information. Journal of Animal Breeding and Genetics 130, 456467.CrossRefGoogle Scholar
Hair, JF, Black, WC, Babin, BJ and Anderson, RE (2009) Multivariate Data Analysis, 7th., Upper Saddle River, NJ, USA: Prentice-Hall.Google Scholar
Hartigan, JA (1975) Clustering Algorithms, 1st., New York, USA: John Wiley & Sons Inc.Google Scholar
Hartigan, JA and Wong, MA (1979) Algorithm AS 136: a k-means clustering algorithm. Journal of Applied Statistics 28, 100108.CrossRefGoogle Scholar
Hazel, LN (1943) The genetic basis for constructing selection indexes. Genetics 28, 476490.CrossRefGoogle ScholarPubMed
Hazel, LN, Dickerson, GE and Freeman, AE (1994) The selection index – then, now, and for the future. Journal of Dairy Science 77, 32363251.CrossRefGoogle ScholarPubMed
Kaps, M, Herring, WO and Lamberson, WR (2000) Genetic and environmental parameters for traits derived from the Brody growth curve and their relationships with weaning weight in Angus cattle. Journal of Animal Science 78, 14361442.CrossRefGoogle ScholarPubMed
Karacaoren, B and Kadarmideen, HN (2008) Principal component and clustering analysis of functional traits in Swiss dairy cattle. Turkish Journal of Veterinary and Animal Sciences 32, 163171.Google Scholar
Martha, GB Jr, Barioni, LG, Vilela, L and Barcellos, AO (2003) Área de Piquete e Taxa de Lotação no Pastejo Rotacionado. Comunicado técnico 101, 18.Google Scholar
Meyer, K (2007) WOMBAT − A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). Journal of Zhejiang University Science 8, 815821.CrossRefGoogle Scholar
Ponzoni, RW and Newman, S (1989) Developing breeding objectives for Australian beef cattle production. Animal Production 49, 3547.Google Scholar
Queiroz, SA, Pelicioni, LC, Silva, BF, Sesana, JC, Martins, MIEG and Sanches, A (2005) Índices de seleção para um rebanho Caracu de duplo propósito. Revista Brasileira de Zootecnia 34, 827837.CrossRefGoogle Scholar
R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Available at https://www.r-project.org/.Google Scholar
SAS (2003) User's Guide. Release 9.1. Statistical Analysis Systems Institute Inc., Cary, NC, USA.Google Scholar
Savegnago, RP, Nascimento, GB, Rosa, GJM, Carneiro, RLR, Sesana, RC, El Faro, L and Munari, DP (2016) Cluster analyses to explore the genetic curve pattern for milk yield of Holstein. Livestock Science 183, 2832.CrossRefGoogle Scholar
Schneerberger, M, Barwick, SA, Crow, GH and Hammond, K (1992) Economic indices using breeding values predicted by BLUP. Journal of Animal Breeding and Genetics 109, 180187.CrossRefGoogle Scholar
Urioste, JI, Ponzoni, RW, Aguirrezabala, M, Rovere, G and Saavedra, D (1998) Breeding objectives for pasture-fed Uruguayan beef cattle. Journal of Animal Breeding and Genetics 115, 357373.CrossRefGoogle Scholar
Valadares Filho, SC, Marcondes, MI, Chizzotti, ML and Paulino, PVR (2010) Exigências nutricionais de zebuínos puros e cruzados, 2nd., Viçosa, MG, BR: Universidade Federal de Viçosa, Departamento de Zootecnia.Google Scholar
van der Werf, J (2006) Melhoramento animal: uso de novas tecnologias. In Kinghorn, B, van der Werf, J and Ryan, M (eds), Piracicaba, SP, BR: FEALQ, pp. 7998.Google Scholar
Ward, JH (1963) Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236244.CrossRefGoogle Scholar
Weber, T, Rorato, PRN, Lopes, JS, Comin, JG, Dornelles, MA and Araújo, RO (2009) Parâmetros genéticos e tendências genéticas e fenotípicas para escores visuais na fase pós-desmama de bovinos da raça Aberdeen Angus. Ciência Rural 39, 832837.CrossRefGoogle Scholar
Supplementary material: File

Fernandes et al. supplementary material

Table S1

Download Fernandes et al. supplementary material(File)
File 14.2 KB