Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T06:10:26.088Z Has data issue: false hasContentIssue false

Modulation of morphological and biochemical traits using heterosis breeding in coloured cotton

Published online by Cambridge University Press:  12 March 2012

S. N. YUAN
Affiliation:
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
W. MALIK
Affiliation:
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China Department of Plant Breeding and Genetics, University College of Agriculture, Bahauddin Zakariya University, Multan, Pakistan
N. BIBI
Affiliation:
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
G. J. WEN
Affiliation:
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
M. NI
Affiliation:
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
X. D. WANG*
Affiliation:
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
*
*To whom all correspondence should be addressed. Email:[email protected]

Summary

Heterosis breeding is a potential tool for developing coloured cotton hybrids, having good fibre yield and quality. The objective of the present study was to explore the extent of heterosis breeding for the modulation of fibre quality and biochemical traits during fibre development. The performance of 10 interspecific (Gossypium hirsutum L.×Gossypium barbadense L.) and four intraspecific (Gossypium hirsutum L.×Gossypium hirsutum L.) F1 coloured cotton hybrids and their parents was assessed under field conditions in 2008/9. Two interspecific, two intraspecific F1 coloured cotton hybrids and their parents were used to examine the role and changes in the amount of different biochemicals during the different stages of fibre development (2009). Among hybrids, interspecific brown cotton hybrids (ZUC × ZUA) and interspecific green cotton hybrids (ZUF × ZUA) showed high amounts of useful heterosis for yield, yield components and fibre quality attributes. Analysis of various biochemicals depicted a decline in fibre pH value and flavonoid contents among all hybrids and their parents, with maximum decrease in interspecific hybrids (ZUC × ZUA and ZUF × ZUA) at 15 days post anthesis (DPA). Similarly, a significant increase in the amount of cellulose, glucose and fructose was observed in all genotypes. However, the magnitude of increase was greatest in interspecific coloured cotton hybrids as compared to their parents and intraspecific hybrids. The negative correlation of fibre pH with flavonoid contents and the positive correlation of carbohydrates with cellulose contents (particularly at 15 DPA) suggested the significance of these biochemicals controlling fibre quality. In conclusion, heterosis breeding can be efficiently utilized to develop high-quality coloured cotton hybrids by modulating the synthesis of different biochemicals associated with fibre development and its quality.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abd-El-haleem, S. H. M., Metwali, E. M. R. & Al-Felaly, A. M. M. (2010). Genetic analysis of yield and its components of some Egyptian cotton (Gossypium barbadense L.) varieties. World Journal of Agricultural Sciences 6, 615621.Google Scholar
Baloch, M. J., Lakho, A. R. & Soomro, A. H. (1993). Heterosis in interspecific cotton hybrids. Pakistan Journal of Botany 25, 1320.Google Scholar
Basra, A. S. & Malik, C. P. (1983). Dark metabolism of CO2 during fibre elongation of two cottons differing in fibre lengths. Journal of Experimental Botany 34, 19.CrossRefGoogle Scholar
Basra, A. S. & Malik, C. P. (1984). Development of the cotton fiber. International Review of Cytology 89, 65113.CrossRefGoogle Scholar
Basu, A. K. (1996). Current genetic research in cotton in India. Genetica 97, 279290.CrossRefGoogle Scholar
Dong, H. Z., Li, W. J., Tang, W., Li, Z. H. & Zhang, D. M. (2007). Heterosis in yield, endotoxin expression and some physiological parameters in Bt transgenic cotton. Plant Breeding 126, 169175.CrossRefGoogle Scholar
Dong, J., Wu, F. B., Jin, Z. & Huang, Y. (2006). Heterosis for yield and some physiological traits in hybrid cotton Cikangza 1. Euphytica 151, 7177.CrossRefGoogle Scholar
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350356.CrossRefGoogle Scholar
Dutt, Y., Wang, X. D., Zhu, Y. G. & Li, Y. Y. (2004). Breeding for high yield and fibre quality in coloured cotton. Plant Breeding 123, 145151.CrossRefGoogle Scholar
Elesini, U. S., Cuden, A. P. & Richards, A. F. (2002). Study of green cotton fibres. Acta Chimica Slovenica 49, 815833.Google Scholar
Galanopoulou-Sendouca, S. & Roupakias, S. (1999). Performance of F1 hybrids and its relation to the mean yield of advanced bulk generations. European Journal of Agronomy 11, 5362.CrossRefGoogle Scholar
Geddam, S. B., Khadi, B. M., Mogali, S., Patil, R. S., Katageri, I. S., Nadaf, H. L. & Patil, B. C. (2011). Study of heterosis in genetic male sterility based diploid cotton hybrids for yield, yield components and fibre quality characters. Karnataka Journal of Agriculture Sciences 24, 118124.Google Scholar
Gerardeaux, E., Jordan-Meille, L. & Pellerin, S. (2009). Radiation interception and conversion to biomass in two potassium-deficient cotton crops in South Benin. Journal of Agricultural Science, Cambridge 147, 155168.CrossRefGoogle Scholar
Gipson, J. R. (1986). Temperature effects on growth, development, and fiber properties. In Cotton Physiology (Eds Mauney, J. R. & Stewart, J. M.), pp. 4756. Memphis, TN: Cotton Foundation.Google Scholar
Haigler, C. H. (2007). Substrate supply for cellulose synthesis and its stress sensitivity in cotton fibre. In Cellulose: Molecular and Structural Biology (Eds Brown, R. M. & , I.Saxena, M.), pp. 147168. New York: Springer.CrossRefGoogle Scholar
Haigler, C. H., Ivanova-Datcheva, M., Hogan, P. S., Salnikov, V. V., Hwang, S., Martin, L. L. & Delmer, D. P. (2001). Carbon partitioning in cellulose synthesis. Plant Molecular Biology 47, 2951.CrossRefGoogle ScholarPubMed
Haigler, C. H., Singh, B., Wang, G. & Zhang, D. (2009). Genomics of cotton fibre secondary wall deposition and cellulose biogenesis. In Genetics and Genomics of Cotton, Plant Genetics and Genomics: Crops and Models 3 (Ed. Paterson, A. H.), pp. 385417. New York: Springer Science + Business Media, LLc.CrossRefGoogle Scholar
Hao, J. J., Yu, S. X., Dong, Z. D., Fan, S. L., Ma, Q. X., Song, M. Z. & Yu, J. W. (2008). Quantitative inheritance of leaf morphological traits in upland cotton. Journal of Agricultural Science, Cambridge 146, 561569.CrossRefGoogle Scholar
Hendrix, D. L. (1993). Rapid extraction and analysis of nonstructural carbohydrates in plant tissues. Crop Science 33, 13061311.CrossRefGoogle Scholar
Hondo, T., Yoshida, K., Nakagawa, A., Kawai, T., Tamura, H. & Goto, T. (1992). Structural basis of blue-colour development in flower petals from Commelina communis. Nature 358, 515518.CrossRefGoogle Scholar
Hsieh, Y. L. (1999). Structural development of cotton fibres and linkage in fibre quality. In Cotton Fibers: Developmental Biology, Quality Improvement and Textile Processing (Ed. Basra, A. S.), pp. 137166. New York: The Haworth Press.Google Scholar
Hua, S. J., Wang, X. D., Yuan, S. N., Shao, M. Y., Zhao, X. Q., Zhu, S. J. & Jiang, L. X. (2007). Characterization of pigmentation and cellulose synthesis in colored cotton (Gossypium hirsutum) fibers. Crop Science 47, 15401546.CrossRefGoogle Scholar
Hua, S. J., Yuan, S. N., Shamsi, I. H., Zhao, X. Q., Zhang, X. Q., Liu, Y. X., Wen, G. J., Wang, X. D. & Zhang, H. P. (2009). A comparison of three isolines of cotton differing in fiber color for yield, quality, and photosynthesis. Crop Science 49, 983989.CrossRefGoogle Scholar
Hua, X. N., Zhou, H., Huang, J. Q., Zhu, S. L., Yu, S. J., Zhang, J. S. & Liu, X. M. (1963). The use of heterosis in the interspecific F1 hybrids between G. hirsutum and G. barbadense. Acta Agronomica Sinica 2, 124.Google Scholar
Jaquet, J. P., Buchala, A. J. & Meier, H. (1982). Changes in the non-structural carbohydrate content of cotton (Gossypium spp.) fibres at different stages of development. Planta 156, 481486.CrossRefGoogle ScholarPubMed
Kantartzi, S. K. & Roupakias, D. G. (2010). Study of apomictic seed formation in interspecific, Gossypium barbadense × G. hirsutum, cotton hybrids. International Journal of Botany 6, 164169.CrossRefGoogle Scholar
Kapoor, C. J., Singh, M. & Maheshwari, R. V. (2002). Heterosis for yield and yield attributing traits in desi cotton. Journal of Cotton Research and Development 16, 182183.Google Scholar
Khan, N. U., Hassan, G., Kumbhar, M. B., Marwat, K. B., Khan, M. A., Parveen, A., Aimen, U. & Saeed, M. (2009). Combining ability analysis to identify suitable parents for heterosis in seed cotton yield, its components and lint% in upland cotton. Industrial Crops and Products 29, 108115.CrossRefGoogle Scholar
Kowsalya, R., Raveendran, T. S. & Puspalatha, T. (1999). Heterosis and combining ability analysis for seed quality traits in Gossypium hirsustum L. Madras Agricultural Journal 86, 127134.Google Scholar
Li, J., Ou-Lee, T., Raba, R., Amundson, R. G. & Last, R. L. (1993). Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5, 171179.CrossRefGoogle ScholarPubMed
Li, J. F. (2005). Research on Chinese cotton hybrid vigor utilization. Jiangxi Cotton 27, 37.Google Scholar
Li, X., Wang, X. D., Zhao, X. Q. & Dutt, Y. (2004). Improvement of cotton fiber quality by transforming the acsA and acsB genes into Gossypium hirsutum L. by means of vacuum infiltration. Plant Cell Reports 22, 691697.CrossRefGoogle ScholarPubMed
Martin, C., Bhatt, K. & Baumann, K. (2001). Shaping in plant cells. Current Opinion in Plant Biology 4, 540549.CrossRefGoogle ScholarPubMed
Martin, L. K. & Haigler, C. H. (2004). Cool temperature hinders flux from glucose to sucrose during cellulose synthesis in secondary wall stage cotton fibers. Cellulose 11, 339349.CrossRefGoogle Scholar
Meredith, M. R. Jr. & Bridge, R. R. (1972). Heterosis and gene action in cotton, Gossypium hirsutum L. Crop Science 12, 304310.CrossRefGoogle Scholar
Mol, J., Grotewold, E. & Koes, R. (1998). How genes paint flowers and seeds. Trends in Plant Science 3, 212217.CrossRefGoogle Scholar
Murthy, M. S. S. (2001). Never say dye: the story of coloured cotton. Resonance 6, 2935.CrossRefGoogle Scholar
Preetha, S. & Raveendran, T. S. (2008). Combining ability and heterosis for yield and fibre quality traits in Line × Tester crosses of upland cotton (Gossypium hirsutum L.). International Journal of Plant Breeding and Genetics 2, 6474.CrossRefGoogle Scholar
Randhawa, L. S. & Singh, T. H. (1994). Heterosis breeding for crossing parent yield barriers in cotton. In Proceedings of the World Cotton Research Conference 1, Challenging the Future (Eds Constable, G. A. & Forester, N. W.), pp. 342345. Brisbane, Australia: CSIRO.Google Scholar
Richmond, T. R. (1943). Inheritance of green and brown lint in upland cotton. Journal of the American Society of Agronomy 35, 967975.CrossRefGoogle Scholar
Ruan, Y. L. (2005). Recent advances in understanding cotton fibre and seed development. Seed Science Research 15, 269280.CrossRefGoogle Scholar
Ruan, Y. L., Llewellyn, D. J. & Furbank, R. T. (2001). The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13, 4760.Google Scholar
Seagull, R. W. (1992). A quantitative electron microscopic study of changes in microtuble arrays and wall microfibril orientation during in vitro cotton fiber development. Journal of Cell Science 101, 561577.CrossRefGoogle Scholar
Shirley, B. W. (1996). Flavonoid biosynthesis: new function for an old pathway. Trends in Plant Science 1, 377388.Google Scholar
Soomro, Z. A., Kumbhar, M. B. & Larik, A. S. (2009). Heterosis and inbreeding depression for quality traits in diverse cotton genotypes. Journal of Agricultural Research 47, 349358.Google Scholar
Srivastava, H. K. (2000). Nuclear control and mitochondrial transcript processing with relevance to cytoplasmic male sterility in higher plants. Current Science 79, 176186.Google Scholar
Stapleton, A. E. & Walbot, V. (1994). Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiology 105, 881889.CrossRefGoogle ScholarPubMed
Thaker, V. S., Rabadia, V. S. & Singh, Y. D. (1999). Physiological and biochemical changes associated with cotton fibre development. VII. Carbohydrate metabolism. Acta Physiologiae Planttarum 21, 5761.CrossRefGoogle Scholar
Tokatlidis, I. S., Tsikrikoni, C., Lithourgidis, A. S., Tsialtas, J. T. & Tzantarmas, C. (2011). Intra-cultivar variation in cotton: response to single-plant yield selection at low density. Journal of Agricultural Science, Cambridge 149, 197204.CrossRefGoogle Scholar
Tokatlidis, I. S., Tsikrikoni, C., Tsialtas, J. T., Lithourgidis, A. S. & Bebeli, P. J. (2008). Variability within cotton cultivars for yield, fibre quality and physiological traits. Journal of Agricultural Science, Cambridge 146, 483490.CrossRefGoogle Scholar
Updegraff, D. M. (1969). Semimicro determination of cellulose in biological materials. Analytical Biochemistry 32, 420424.CrossRefGoogle ScholarPubMed
Vreeland, J. M. Jr (1987). Colour cotton return to the native. International Development Research Centre Reports 10, 45.Google Scholar
Wang, G. Q., Xu, C. H. & Wei, J. M. (1999). Photosynthesis, respiration, and carbohydrate metabolism (in Chinese). In Manual of Modern Plant Physiology Experiments (Ed. , Z. C. Tang), pp. 9697. Beijing, China: Science Press.Google Scholar
Wang, X. D., Dutt, Y. Y., Ni, X. Y., Zhao, X. Q. & Nirania, K. S. (2004). Breeding for semi-okra leaf hybrids in upland cotton (Gossypium hirsutum L.) (Abstract). In Proceedings of the International Symposium on Strategies for Sustainable Cotton Production: a Global Vision, held at UAS, Dharwad (Karnataka) from November 21–23, 2004 (Eds Khadi, B. M., Katageri, I. S., Patil, S. B., Vamadevaiah, H. M., Udikeri, S. & Eshanna, ), pp. 469. Dharwad, Karnataka, India: Socio Economics, University of Agricultural Sciences.Google Scholar
Wang, X. D. & Li, Y. Y. (2002 a). Development of cytoplasmic male-sterile, maintainer and restorer lines in colored cotton and construction of their DNA fingerprints. Journal of Zhejiang University (Agriculture & Life Sciences) 28, 16.Google Scholar
Wang, X. D. & Li, Y. Y. (2002 b). Study on characteristics of colored cotton fiber development. Journal of Zhejiang University (Agriculture & Life Sciences) 28, 237242.Google Scholar
Wang, X. D. & Li, Y. Y. (2002 c). Study on extraction and quantification of fiber pigment matter in colored cotton. Journal of Zhejiang University (Agriculture & Life Sciences) 28, 596600.Google Scholar
Wang, Y. H., Shu, H. M., Cheng, B. L., Mcgiffen, M. E. Jr, Zhang, W. J., Xu, N. Y. & Zhou, Z. G. (2009). The rate of cellulose increase is highly related to cotton fibre strength and is significantly determined by its genetic background and boll period temperature. Plant Growth Regulation 57, 203209.CrossRefGoogle Scholar
Wilkins, T. A. & Jernstedt, J. A. (1999). Molecular genetics of developing cotton fibers. In Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing (Ed. Basra, A. S.), pp. 231269. New York: Food Products Press.Google Scholar
Wu, Y. T., Yin, J. M., Guo, W. Z., Zhu, X. F. & Zhang, T. Z. (2004). Heterosis performance of yield and fibre quality in F1 and F2 hybrids in upland cotton. Plant Breeding 123, 285289.CrossRefGoogle Scholar
Yoshida, K., Kitahara, S., Ito, D. & Kondo, T. (2006). Ferric ions involved in the flower color development of the Himalayan blue poppy, Meconopsis grandis. Phytochemistry 67, 992998.CrossRefGoogle ScholarPubMed
Yuan, S. N., Hua, S. J., Ni, M., Li, Y. Y., Wen, G. J., Shao, M. Y., Zhang, H. P., Zhu, S. J. & Wang, X. D. (2010). The relationship between fiber macroelement content and fiber quality in colored cotton. Scientia Agricultura Sinica 43, 41694175.Google Scholar
Zhang, W. J., Shu, H. M., Hu, H. B., Cheng, B. L., Wang, Y. H. & Zhou, Z. G. (2009). Genotypic differences in some physiological characteristics during the cotton fibre thickening and its influence on fibre strength. Acta Physiologiae Plantarum 31, 927935.CrossRefGoogle Scholar
Zhang, X. Q., Wang, X. D., Jiang, P. D., Hua, S. J., Zhang, H. P. & Dutt, Y. (2007). Relationship between molecular marker heterozygosity and hybrid performance in intra- and interspecific hybrids of cotton. Plant Breeding 126, 385391.CrossRefGoogle Scholar
Zhao, X. Q. & Wang, X. D. (2005). Study on heterosis and seed production of hybrid between cytoplasmic male sterile lines and restoring lines in colored cotton. Cotton Science 17, 811.Google Scholar
Zhu, W., Liu, K. & Wang, X. D. (2008). Heterosis in yield, fiber quality, and photosynthesis of okra leaf oriented hybrid cotton (Gossypium hirsutum L.). Euphytica 164, 283291.CrossRefGoogle Scholar