Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T06:24:28.948Z Has data issue: false hasContentIssue false

Model-based benchmarking of the production potential of plantains (Musa spp., AAB): application to five real plantain and four plantain-like hybrid varieties in Cameroon

Published online by Cambridge University Press:  05 December 2016

S. DÉPIGNY*
Affiliation:
CIRAD, UPR GECO, Njombé, Cameroon CARBAP, Njombé, Cameroon CIRAD, UPR GECO, F-34398 Montpellier, France
T. LESCOT
Affiliation:
CIRAD, UPR GECO, F-34398 Montpellier, France
R. ACHARD
Affiliation:
CIRAD, UPR GECO, F-34398 Montpellier, France CIRAD, UPR GECO, F-97285 Le Lamentin, Martinique, France
O. DIOUF
Affiliation:
CARBAP, Njombé, Cameroon
F. X. COTE
Affiliation:
CIRAD, UPR GECO, F-34398 Montpellier, France
C. FONBAH
Affiliation:
CARBAP, Njombé, Cameroon
L. SADOM
Affiliation:
CARBAP, Njombé, Cameroon
P. TIXIER*
Affiliation:
CIRAD, UPR GECO, F-34398 Montpellier, France
*
*To whom all correspondence should be addressed. Email: [email protected] or [email protected]
*To whom all correspondence should be addressed. Email: [email protected] or [email protected]

Summary

A great many plantain varieties are cropped in West and Central Africa, and there is a lack of information about their production potential and suitability for cropping system environments. To obtain benchmark data for the production potential of plantain varieties, experimental and modelling approaches were combined to determine intrinsic growth parameters and to increase understanding of factors affecting yield. Five real plantains commonly cropped in Cameroon and representative of plantain group diversity (Batard, Big Ebanga, Essong, French clair and Mbouroukou n°3) and four plantain-like hybrids (CRBP39, D248, D535 and FHIA21) were studied. A process-based growth model (the AAB model) was developed that accounts for specific characteristics of the plantain crop that includes parameters affecting growth, development and yield. Varietal-specific parameters were determined in a field experiment conducted under nearly non-limiting production conditions while general parameters were drawn from the literature. Parameters describing the conversion of intercepted radiation into dry matter were evaluated by model fitting. Photosynthetic efficiency was significantly higher for real plantains than for plantain-like hybrids. The model realistically simulated development, growth and bunch production for five varieties. These results are the first step in developing a useful tool for assessing the suitability of plantain varieties to different environments. The current study highlights the need for greater knowledge of plantain physiology in order to better model plantain growth and develop variety-specific production approaches.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Achard, R., Malézieux, E., Robin, P. & Ganry, J. (2002). Role and status of plantain in agroforestry systems of South West Cameroon: which pathways to productive and sustainable system? In Sustainability of Horticultural Systems in the 21st Century: Proceedings of the XXVI International Horticultural Congress (Eds Bertschinger, L. & Anderson, J. D.), pp. 101108. Acta Horticulturae 638. Toronto: ISHS.Google Scholar
Barker, W. G. & Steward, F. C. (1962). Growth and development of the banana plant. II. The transition from the vegetative to the floral shoot in Musa acuminata cv. Gros Michel. Annals of Botany 103, 413423.Google Scholar
Brisson, N., Mary, B., Ripoche, D., Jeuffroy, M. H., Ruget, F., Nicoullaud, B., Gate, P., Devienne-Barret, F., Antonioletti, R., Durr, C., Richard, G., Beaudoin, N., Recous, S., Tayot, X., Plenet, D., Cellier, P., Machet, J.-M., Meynard, J.-M. & Delécolle, R. (1998). STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 18, 311346.CrossRefGoogle Scholar
Casadebaig, P., Guilioni, L., Lecoeur, J., Christophe, A., Champolivier, L. & Debaeke, P. (2011). SUNFLO, a model to simulate genotype-specific performance of the sunflower crop in contrasting environments. Agricultural and Forest Meteorology 151, 163178.Google Scholar
Crouch, H. K., Crouch, J. H., Madsen, S., Vuylesteke, D. & Ortiz, R. (2000). Comparative analysis of phenotypic and genotypic diversity among plantain landraces (Musa spp., AAB group). Theoretical and Applied Genetics 101, 10561065.Google Scholar
Damour, G., Dorel, M., Quoc, H. T., Meynard, C. & Risède, J. M. (2014). A trait-based characterization of cover plants to assess their potential to provide a set of ecological services in banana cropping systems. European Journal of Agronomy 52, 218228.Google Scholar
Daniells, J., Jenny, C., Karamura, D. & Tomekpe, K. (2001). Musalogue, a Catalogue of Musa Germplasm. Diversity in the Genus Musa. Montpellier, France: INIBAP, IPGRI.Google Scholar
De Cauwer, I. & Ortiz, R. (1998). Analysis of the genotype × environment interaction in Musa trials. Experimental Agriculture 34, 177188.Google Scholar
De Langhe, E., Pillay, M., Tenkouano, A. & Swennen, R. (2005). Integrating morphological and molecular taxonomy in Musa: the African plantains (Musa spp. AAB group). Plant Systematics and Evolution 255, 225236.CrossRefGoogle Scholar
Dépigny, S., Achard, R., Lescot, T., Djomessi, M. T., Tchotang, F., Ngando, D. E. & Poix, C. (2015). In vivo assessment of the active foliar area of banana plants (Musa spp.) using the OTO model. Scientia Horticulturae 181, 129136.Google Scholar
Devos, P. & Wilson, G. F. (1983). Associations du plantain à d'autres plantes vivrières. II-Autres combinaisons avec le maïs, le taro et le manioc. Fruits 38, 293299.Google Scholar
Dorel, M., Achard, R. & Tixier, P. (2008). SIMBA-N: modeling nitrogen dynamics in banana populations in wet tropical climate. Application to fertilization management in the Caribbean. European Journal of Agronomy 29, 3845.Google Scholar
Dzomeku, B. M., Bam, R. K., Adu-Kwarteng, E., Darkey, S. K. & Ankomah, A. A. (2007). Agronomic and physio-chemical evaluation of FHIA-21 in Ghana. International Journal of Agricultural Research 5, 12151219.Google Scholar
Dzomeku, B. M., Armo-Annor, F., Adjei-Gyan, K., Ansah, J., Nkakwa, A. & Darkey, S. K. (2008). On-farm evaluation and consumer acceptability study of selected tetraploid Musa hybrid in Ghana. Journal of Plant Sciences 3, 216223.Google Scholar
Ganry, J. (1980). Action de la température et du rayonnement d'origine solaire sur la vitesse de croissance des feuilles du bananier (Musa acuminata Colla). Application à l’étude du rythme de développement de la plante et relation avec la productivité. Ph.D. thesis, Université Paris VII: Paris, France.Google Scholar
Garming, H., Espinosa, J., Guardia, S. & Jimenez, R. (2013). Large-scale adoption of improved plantains: the impact of FHIA-21 in the Dominican Republic. Acta Horticulturae 986, 259265.Google Scholar
Hauser, S. (2010). Growth and yield response of the plantain (Musa spp.) hybrid FHIA21 to shading and rooting by Inga edulis on a Southern Cameroonian ultisol. Acta Horticulturae 879, 487494.CrossRefGoogle Scholar
Irish, B. M., Goenaga, R., Rios, C., Chavarria-Carvajal, J. & Ploetz, R. (2013). Evaluation of banana hybrids for tolerance to black leaf streak (Mycosphaerella fijiensis Morelet) in Puerto Rico. Crop Protection 54, 229238.CrossRefGoogle Scholar
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J. & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy 18, 235265.CrossRefGoogle Scholar
Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., Huth, N. I., Hargreaves, J. N. G., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes, J. P., Silburn, M., Wang, E., Brown, S., Bristow, K. L., Asseng, S., Chapman, S., McCown, R. L., Freebairn, D. M. & Smith, C. J. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18, 267288.CrossRefGoogle Scholar
Kostov, B., Bécue-Bertaut, M. & Husson, F. (2013). Multiple factor analysis for contingency tables in the FactoMineR package. The R Journal 5, 2938.Google Scholar
Kwa, M. (2003). Activation de bourgeons latents et utilisation de fragments de tige du bananier pour la propagation en masse de plants en conditions horticoles in vivo . Fruits 58, 315328.Google Scholar
Lassoudière, A. (2007). Le Bananier et sa Culture. Versailles, France: Quae.Google Scholar
Marchal, J. & Malessard, R. (1979). Comparaison des immobilisations minérales de quatre cultivars de bananiers à fruits pour cuisson et deux ‘Cavendish’. Fruits 34, 373392.Google Scholar
Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology 9, 747766.Google Scholar
Murray, D. B. (1960). The effect of deficiencies of the major nutrients on growth and leaf analysis of the banana. Tropical Agriculture 37, 97106.Google Scholar
Norgrove, L. & Hauser, S. (2002). Yield of plantain grown under different tree densities and ‘slash and mulch’ versus ‘slash and burn’ management in an agrisilvicultural system in southern Cameroon. Field Crops Research 78, 185195.Google Scholar
Nyombi, K., Van Asten, P. J. A., Leffelaar, P. A., Corbeels, M., Kaizzi, C. K. & Giller, K. E. (2009). Allometric growth relationships of East Africa highland bananas (Musa AAA-EAHB) cv. Kisansa and Mbwazirume. Annals of Applied Biology 155, 403418.Google Scholar
Odah, O., Aziadekey, M., Tozo, K., Akpavi, S., Koukouma, R., Guelly, A., Kokou, K., Assignon, K., Akogo, Y., Aidam, A., Akpagana, K., Kenny, L., Ait-Oubahou, A., Zinsou, C. & Gbeassor, M. (2013). La diversité génétique des bananiers plantains cultivés dans la zone Ouest de la Région des Plateaux au Togo (The genetic diversity of plantain grown in the western area of the Plateaux Region, Togo). International Journal of Biological and Chemical Sciences 7, 19101918.Google Scholar
Ortiz, R. (2013). Conventional banana and plantain breeding. Acta Horticulturae 986, 177194.CrossRefGoogle Scholar
Osuji, J. O., Okoli, B. E., Vuylsteke, D. & Ortiz, R. (1997). Multivariate pattern of quantitative trait variation in triploid banana and plantain cultivars. Scientia Horticulturae 71, 197202.CrossRefGoogle Scholar
Simmonds, N. W. (1966). Bananas. Tropical Agriculture Series. London, UK: Longmans.Google Scholar
Swennen, R., Vuylsteke, D. & Ortiz, R. (1995). Phenotypic diversity and patterns of variation in west and central African plantains (Musa spp., AAB group Musaceae). Economic Botany 49, 320327.Google Scholar
Temple, L., Kwa, M., Fogain, R. & Mouliom Péfoura, A. (2006). Participatory determinants of innovation and their impact on plantain production systems in Cameroon. International Journal of Agricultural Sustainability 4, 233243.Google Scholar
Thomas, D. S., Turner, D. W. & Eamus, D. (1998). Independent effects of the environment on the leaf gas exchange of three banana (Musa sp.) cultivars of different genomic constitution. Scientia Horticulturae 75, 4157.CrossRefGoogle Scholar
Tixier, P., Malezieux, E. & Dorel, M. (2004). SIMBA-POP: a cohort population model for long-term simulation of banana crop harvest. Ecological Modelling 180, 407417.Google Scholar
Tomekpe, K., Kwa, M., Dzomeku, B. M. & Ganry, J. (2011). CARBAP and innovation on the plantain banana in Western and Central Africa. International Journal of Agricultural Sustainability 9, 264273.CrossRefGoogle Scholar
Yao, N. (1988). Enquête sur les systèmes de culture intégrant le bananier plantain en milieu paysan de Côte d'Ivoire. Fruits 43, 149159.Google Scholar