Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T00:57:15.509Z Has data issue: false hasContentIssue false

The metabolism of fowl sperm in different diluents

Published online by Cambridge University Press:  27 March 2009

A. van Tienhoven
Affiliation:
New York Agricultural Experiment Station at Cornell University, Ithaca, New York

Extract

Dilution of fowl semen with phosphate or saline diluents depressed respiration, while dilution with seminal plasma did not affect respiration. Dilution with Tyrode solution resembled dilution with seminal plasma with respect to respiration. The effect of Tyrode solution seemed to be mainly due to its NaHCO3 content.

The effect of Ca, Mg and K ions depended on the anions in the diluents. Phosphate depressed respiration and glycolysis when it replaced saline in the Tyrode diluent.

Dilution did not consistently increase respiration and in most cases depressed respiration.

Fowl sperm preferentially utilized glucose when glucose and fructose were initially present in equal concentration in the diluent. The sperm metabolize glucose at a faster rate than fructose. No evidence was found for the formation of glucose from fructose under our experimental conditions.

Initial respiration and glycolysis of fowl semen was depressed by the addition of glycine to the Tyrode diluent. However, the glycine addition resulted in a less sharp decrease in the hourly respiration rate.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1960

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, T. E. & Bobr, L. W. (1955). Poult. Sci. 34, 1167.CrossRefGoogle Scholar
Bade, M., Wiegers, H. & Nelson, L. (1956). J. Appl. Physiol. 9, 91.CrossRefGoogle Scholar
Barker, S. B. & Summerson, W. B. (1941). J. Biol. Chem. 138, 535.CrossRefGoogle Scholar
Bishop, M. W. H. & Salisbury, G. W. (1955 a). Amer. J. Physiol. 180, 107.CrossRefGoogle Scholar
Bishop, M. W. H. & Salisbury, G. W. (1955 b). Amer. J. Physiol. 181, 114.CrossRefGoogle Scholar
Blackshaw, A. W. & Salisbury, G. W. (1957). J. Dairy Sci. 40, 1093.CrossRefGoogle Scholar
Bogdonoff, P. D. Jr. & Shaffner, C. S. (1954). Poult. Sci. 33, 665.CrossRefGoogle Scholar
Burrows, W. H. & Quin, J. P. (1937). Poult. Sci. 16, 19.CrossRefGoogle Scholar
Flipse, R. J. (1956). Science, 124, 228.CrossRefGoogle Scholar
Flipse, R. J. & Almquist, J. O. (1956). J. Dairy Sci. 39, 1690.CrossRefGoogle Scholar
Flipse, R. J. & Almquist, J. O. (1958). J. Dairy Sci. 41, 1787.CrossRefGoogle Scholar
Flipse, R. J. & Benson, A. A. (1957). Exp. Cell Res. 13, 611.CrossRefGoogle Scholar
Horvath, S. M. & Knehr, C. A. (1941). J. Biol. Chem. 140, 869.CrossRefGoogle Scholar
Khodt, C. B. & Salisbury, G. W. (1946). J. Dairy sci. 29, 285.Google Scholar
Kosin, I. L. (1944). Physiol. Zoöl. 17, 289.CrossRefGoogle Scholar
Lake, P. E., Butler, E. J., McCallum, J. & MacIntyre, I. J. (1958). Quart. J. Exp. Physiol. 309.Google Scholar
Lardy, H. A. (1952). In Studies on Testis and Ovary, Eggs and Sperm, Engle, E. T. (ed.), p. 111. Springfield, Illinois: Thomas.Google Scholar
Lardy, H. A. & Phillips, P. H. (1943). Amer. Physiol. 138, 741.CrossRefGoogle Scholar
Lobenz, F. W. (1958). Nature, Lond., 182, 397.Google Scholar
Lorenz, F. W. & Tyler, A. (1951). Proc. Soc. Biol, N.Y., 78, 57.CrossRefGoogle Scholar
Mann, T. & White, I. G. (1957). Biochem. J. 634.Google Scholar
Polge, C. (1951). Proc. IXth World's Poultry Congr. (3) 11.Google Scholar
Roe, J. H. (1934). J. Biol. Ghem. 107, 15.CrossRefGoogle Scholar
Roy, A. & Bishop, M. W. H. (1954). Nature, Lond., 174, 746.CrossRefGoogle Scholar
Salisbury, G. W., Beck, G. H., Elliott, I. & Willett, E. L. (1943). J. Dairy Sci. 26, 69.CrossRefGoogle Scholar
Salisbury, G. W. & Nakabayashi, N. T. (1957). J. Exp. Biol. 34, 52.CrossRefGoogle Scholar
Snedecor, G. W. (1956). Statistical Methods, 5th ed.Iowa State College Press: Ames, Iowa.Google Scholar
Tyler, A. & Atkinson, E. (1950). Science, 112, 783.CrossRefGoogle Scholar
Tylee, A. & Rothschild, Lord (1951). Proc. Soc. Exp. Biol., N.Y., 76, 52.Google Scholar
Umbreit, W. W., Burris, R. H. & Stauffer, J. F. (1957). Manometric Techniques. Minneapolis: Burgess Publishing Co.Google Scholar
van Tbenhoven, A., Salisbuby, G. W., Van Denmark, N. L. & Hansen, R. G. (1952). J. Dairy Sci. 35, 637.CrossRefGoogle Scholar
Wales, R. G. & White, I. G. (1958). Aust. J. Biol. Sci. 2, 177.CrossRefGoogle Scholar
White, I. G. (1956). J. Exp. Biol. 33, 422.CrossRefGoogle Scholar
White, I. G. (1957). Amer. J. Physiol. 189, 307.CrossRefGoogle Scholar
Wilcox, F. H. & Shaffner, C. S. (1957). J. Appl. Physiol. 11, 429.CrossRefGoogle Scholar
Wilcox, F. H. & Shaffner, C. S. (1958). Poultry Sci. 37, 1353.CrossRefGoogle Scholar
Wilcox, F. H. & Shorb, M. S. (1958). Amer. J. Vet. Res. 19, 945.Google Scholar
Winberg, H. (1940). Ark. Zool. 32 (7), 1.Google Scholar