Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T05:39:14.638Z Has data issue: false hasContentIssue false

Losses in the conservation of grassland herbage as molassed and metabisulphite silage in lined trench silos

Published online by Cambridge University Press:  27 March 2009

W. O. Brown
Affiliation:
Agricultural Chemistry Department, The Queen's University of Belfast and The Agricultural Research Institute for Northern Ireland
V. Smyth
Affiliation:
Agricultural Chemistry Department, The Queen's University of Belfast and The Agricultural Research Institute for Northern Ireland

Extract

A conservation experiment is described in which a comparison of the nutrient losses and quality of sodium metabisulphite silage and molassed silage is made. The loss of dry matter in molassed silage is shown to be 3·5% higher than in metabisulphite silage.

The lactic-acid content of metabisulphite silage is found to be some 40% less than that of molassed silage.

The results obtained are discussed in relation to published work on conservation by metabisulphite and to the practical application of the method.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alderman, G., Cowan, R. L., Bratzler, J. W. & Swift, R. W. (1955). J. Dairy Sci. 38, 805.CrossRefGoogle Scholar
Barker, S. B. & Summerson, W. H. (1941). J. Biol. Chem. 138, 535.CrossRefGoogle Scholar
Bratzler, J. W., Cowan, R. L. & Swift, R. W. (1955). Bull. 597, Pa. State Univ. Coll. Pa.Google Scholar
Brown, W. O. & Heaney, I. H. (1951). J. Brit. Grassl. Soc. 6, 91.CrossRefGoogle Scholar
Common, R. H. & Bolton, W. (1942). J. Agric. Sci. 32, 338.CrossRefGoogle Scholar
Cowan, R. L., Bratzler, J. W. & Swift, R. W. (1952). Science, 116, 154.CrossRefGoogle Scholar
Elsden, S. R. & Gibson, Q. H. (1954). Biochem. J. 58, 154.CrossRefGoogle Scholar
Friedemann, T. E. & Graeser, J. B. (1933). J. Biol. Chem. 100, 291.CrossRefGoogle Scholar
Gordon, J. J. & Quastel, J. H. (1939). Biochem. J. 33, 1332.CrossRefGoogle Scholar
Markham, R. (1942). Biochem. J. 36, 790.CrossRefGoogle Scholar
Miller, R. C., Kean, G. R., Purdy, H. R. & Sour, R. S. (1956). Progr. Rep. 155, Pa. State Univ.Google Scholar
Murdock, J. C., Balch, D. A., Foot, A. S. & Rowland, S. J. (1955). J. Brit. Grassl. Soc. 10, 139.CrossRefGoogle Scholar
Murdock, J. C., Holdsworth, M. C. & Wood, M. (1956). J. Brit. Grassl. Soc. 11, 16.CrossRefGoogle Scholar
Salunkhe, D. K. (1956). Nature, Lond., 178, 1187.CrossRefGoogle Scholar
Smith, A. M. (1938). Analyst, 63, 777.CrossRefGoogle Scholar
Watson, S. J. (1939). The Science and Practice of Conservation: Grass and Forage Crops, vols. 1 and 2. The Fertiliser and Feedingstuffs Jour. London.Google Scholar
Woodman, H. E. (1925). J. Agric. Sci. 15, 343.CrossRefGoogle Scholar