Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T03:51:40.220Z Has data issue: false hasContentIssue false

Life-cycle assessment of the intensity of production on the greenhouse gas emissions and economics of grass-based suckler beef production systems

Published online by Cambridge University Press:  13 June 2013

A. M. CLARKE
Affiliation:
Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
P. BRENNAN
Affiliation:
Bord Bia, Clanwilliam Court, Lower Mount Street, Dublin 2, Ireland
P. CROSSON*
Affiliation:
Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

In Ireland, the largest contributor of greenhouse gas (GHG) emissions is agriculture. The objective of the current study was to evaluate the impact of stocking intensities of beef cattle production systems on technical and economic performance and GHG emissions. A bioeconomic model of Irish suckler beef production systems was used to generate scenarios and to evaluate their technical and economic performance. To model the impact of each scenario on GHG emissions, the output of the bioeconomic model was used as an inventory analysis in a life-cycle assessment model and various GHG emission factors were integrated with the production profile. All the estimated GHG emissions were converted to their 100-year global warming potential carbon dioxide equivalent (CO2e). The scenarios modelled were bull/heifer and steer/heifer suckler beef production systems at varying stocking intensities. According to policy constraints, stocking intensities were based on the excretion of organic nitrogen (N), which varied depending on animal category. Stocking intensity was increased by increasing fertilizer N application rates. Carcass output and profitability increased with increasing stocking intensity. At a stocking intensity of 150 kg N/ha total emissions were lowest when expressed per kg of beef carcass (20·1 kg CO2e/kg beef) and per hectare (9·2 tCO2e/ha) in the bull/heifer system. Enteric fermentation was the greatest source of GHG emissions and ranged from 0·49 to 0·47 of total emissions with increasing stocking intensity for both production systems. The current study shows that increasing stocking intensity via increased fertilizer N application rates leads to increased profitability on beef farms with only modest increases in GHG emissions.

Type
Modelling Animal Systems Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baudracco, J., Lopez-Villalobos, N., Romero, L. A., Scandolo, D., Maceil, M., Comeron, E. A., Holmes, C. W. & Barry, T. N. (2011). Effects of stocking rate on pasture production, milk production and reproduction of supplemented crossbred Holstein–Jersey dairy cows grazing lucerne pasture. Animal Feed Science and Technology 168, 131143.CrossRefGoogle Scholar
Beauchemin, K. A., Janzen, H. H., Little, S. M., Mcallister, T. A. & Mcginn, S. M. (2010). Life cycle assessment of greenhouse gas emissions from beef production in western Canada: a case study. Agricultural Systems 103, 371379.CrossRefGoogle Scholar
Breen, J., Donnellan, T., Hanrahan, K., Gillespie, P., Miller, C. & O'Donoghue, C. (2010 a). Economic issues associated with greenhouse gas emission reductions in Ireland (abstract). In A Climate for Change. Opportunities for Carbon-Efficient Farming. International Conference organised by the Teagasc, GHG working group. Dublin, 24–25 June, 2010, p. 9. Carlow, Ireland: Teagasc.Google Scholar
Breen, J. P., Donnellan, T. & Westhoff, P. (2010 b). Food for thought: EU climate change policy presents new challenges for agriculture. EuroChoices 9, 2429.CrossRefGoogle Scholar
Burney, J. A., Davis, S. J. & Lobell, D. B. (2010). Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Science USA 107, 1205212057.CrossRefGoogle ScholarPubMed
Carbon Trust (2010). Footprint Expert™. Model Framework, Reference Database and Calculators. Footprint Expert v.3.1 July 2010. London: Carbon Trust Footprinting Company.Google Scholar
Casey, J. W. & Holden, N. M. (2006). Greenhouse gas emissions from conventional, agri-environmental scheme, and organic Irish suckler-beef units. Journal of Environmental Quality 35, 231239.CrossRefGoogle ScholarPubMed
Clarke, A. M., Drennan, M. J., Mcgee, M., Kenny, D. A., Evans, R. D. & Berry, D. P. (2009). Intake, growth and carcass traits in male progeny of sires differing in genetic merit for beef production. Animal 3, 791801.CrossRefGoogle ScholarPubMed
Connolly, L., Kinsella, A., Quinlan, G. & Moran, B. (2006). National Farm Survey 2005. Athenry, Co. Galway, Ireland: Teagasc. Available from: http://www.agresearch.teagasc.ie/rerc/downloads/NFS/AnnualReport'05.pdf (verified 1 May 2013).Google Scholar
Crosson, P. (2008). The impact of cow genotype on the profitability of grassland-based suckler beef production in Ireland. In Biodiversity and Animal Feed: Future Challenges for Grassland Production. Proceedings of the 22nd Annual Meeting of the European Grassland Federation, Uppsala, Sweden, 9–12 June 2008 (Eds Hopkins, N., Gustafsson, T., Bertilsson, J., Dalin, G., Nilsdotter-Linde, N. & Spörndly, E.), pp. 771773. Grassland Science in Europe vol. 13. Uppsala, Sweden: SLU.Google Scholar
Crosson, P. & Mcgee, M. (2011). Suckler beef production in Ireland: challenges and opportunities. In Proceedings of the National Beef Conference, 5th April 2011, Kilkenny, Ireland. pp. 2942. Carlow, Ireland: Teagasc. Available from: http://www.teagasc.ie/publications/2011/475/BEEF_CONFERENCE_PROCEEDINGS_050411.pdf (verified 22 April 2013).Google Scholar
Crosson, P., O'Kiely, P., O'Mara, F. P. & Wallace, M. (2006). The development of a mathematical model to investigate Irish beef production systems. Agricultural Systems 89, 349370.CrossRefGoogle Scholar
Crosson, P., O'Kiely, P., O'Mara, F. & Wallace, M. (2007). Optimal beef production system in differing concentrate price and grass utilisation scenarios. In Proceedings of the Agricultural Research Forum 2007. p. 51. Carlow, Ireland: Teagasc. Available from: http://www.agresearchforum.com/publicationsarf/2007/Page%20051.pdf (verified 22 April 2013).Google Scholar
Crosson, P., Shalloo, L., O'Brien, D., Lanigan, G. J., Foley, P. A., Boland, T. M. & Kenny, D. A. (2011). A review of whole farm systems models of greenhouse gas emissions from beef and dairy cattle production systems. Animal Feed Science and Technology 166–167, 2945.CrossRefGoogle Scholar
Dalgaard, T., Halberg, N. & Porter, J. R. (2001). A model for fossil energy use in Danish agriculture used to compare organic and conventional farming. Agriculture, Ecosystems and Environment 87, 5165.CrossRefGoogle Scholar
De Klein, C. A. M. & Eckard, R. J. (2008). Targeted technologies for nitrous oxide abatement from animal agriculture. Australian Journal of Experimental Agriculture 48, 1420.CrossRefGoogle Scholar
Drennan, M. J. & Mcgee, M. (2009). Performance of spring-calving beef suckler cows and their progeny to slaughter on intensive and extensive grassland management systems. Livestock Science 120, 112.CrossRefGoogle ScholarPubMed
Drennan, M. J., Mcgee, M. & Keane, M. G. (2005). Post-weaning performance and carcass characteristics of steer progeny from different suckler cow breed types. Irish Journal of Agriculture and Food Research 44, 195204.Google Scholar
Ecoinvent (2010). Ecoinvent 2.0 Database. St-Gallen, Switzerland: Centre for Life Cycle Inventories. Retrieved from: www.ecoinvent.ch (verified 5 July 2011).Google Scholar
Environmental Protection Agency (EPA) (1990). Methane emissions and opportunities for control. In Workshop Results of Intergovernmental Panel on Climate Change, EPA/400/9-90/007. Washington, D.C.: US EPA.Google Scholar
Environmental Protection Agency (EPA) (2011). Ireland's Greenhouse Gas Emissions Projections 2010–2020. Wexford, Ireland: EPA.Google Scholar
Environmental Protection Agency (EPA) (2013). Ireland's Greenhouse Gas Emissions in 2011. 15 April 2013. Wexford, Ireland: EPA. Available from: http://www.epa.ie/pubs/reports/air/airemissions/GHG_1990-2011_UNFCCC_Final.pdf (verified 1 May 2013).Google Scholar
Fales, S. L., Muller, L. D., Ford, S. A., O'Sullivan, M., Hoover, R. J., Holden, L. A., Lanyon, L. E. & Buckmaster, D. R. (1995). Stocking rate affects production and profitability in a rotationally grazed pasture system. Journal of Production Agriculture 8, 8896.CrossRefGoogle Scholar
Foley, P. A., Crosson, P., Lovett, D. K., Boland, T. M., O'Mara, F. P. & Kenny, D. A. (2011). Whole-farm systems modelling of greenhouse gas emissions from pastoral suckler beef cow production systems. Agriculture, Ecosystems and Environment 142, 222230.CrossRefGoogle Scholar
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M. & Van Dorland, R. (2007). Changes in atmospheric constituents and in radiative forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L.), pp. 129234. Cambridge, UK & New York: Cambridge University Press.Google Scholar
French, P., O'Donovan, M., Horan, B. & Shalloo, L. (2010). What is the optimum stocking rate to maximize profitability of grass based milk production? Irish Grassland Association Journal 44, 1622.Google Scholar
Hennessy, T., Kinsella, A., Moran, B. & Quinlan, G. (2012). National Farm Survey 2011. Athenry, Co. Galway, Ireland: Teagasc.Google Scholar
Horan, B., Mccarthy, B. & Brennan, A. (2012). The Effect of Stocking Rate and Calving Date on the Characteristics of Milk Production Systems Post Milk Quotas. Moorepark, Fermoy, Ireland: Teagasc. Available under ‘Curtins – a Review’ at: http://www.agresearch.teagasc.ie/moorepark/Articles/Curtins%20A%20Review_V2.pdf (verified 22 April 2013).Google Scholar
Howley, M., O'Leary, F. & O'Gallachoir, B. (2007). Energy in Ireland 1990–2006. 2007 Report. Dublin, Ireland: Sustainable Energy Ireland. Available from: http://www.seai.ie/Publications/Statistics_Publications/Energy_in_Ireland/Energy_in_Irl_1990-2006_Fnl_07_rpt.pdf (verified 22 April 2013).Google Scholar
Hyde, B., Carton, O. & Murphy, W. (2008). Farm Facility Survey 2003. Report prepared for the Department of Agriculture by Teagasc Johnstown Castle, Co. Wexford, Ireland. Wexford, Ireland: Teagasc.Google Scholar
Intergovernmental Panel on Climate Change (IPCC) (2006). Guidelines for National Greenhouse Gas Inventories (Eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.). Prepared by the National Greenhouse Gas Inventories Programme. Kanagawa, Japan: IGES.Google Scholar
International Organisation of Standardisation (ISO) (2006). Environmental Management – Life Cycle Assessment: Principles and Framework. (ISO 14040:2006). Geneva, Switzerland: ISO.Google Scholar
Jarrige, R. (1989). Ruminant Nutrition. Recommended Allowances and Feed Tables. London: John Libbey Eurotext.Google Scholar
Kennedy, E., O' Donovan, M., Murphy, J. P., O'Mara, F. P. & Delaby, L. (2006). The effect of initial spring grazing date and subsequent stocking rate on the grazing management, grass dry matter intake and milk production of dairy cows in summer. Grass and Forage Science 61, 375384.CrossRefGoogle Scholar
Kennedy, E., O' Donovan, M., Murphy, J. P., Delaby, L. & O'Mara, F. P. (2007). Effect of spring grazing date and stocking rate on sward characteristics and dairy cow production during midlactation. Journal of Dairy Science 90, 20352046.CrossRefGoogle ScholarPubMed
Lothe, K., Fuchs, C. & Zeddies, J. (1997). Reductions of emissions in farming systems in Germany. In Climate Change Mitigation and European Land Use Policies (Eds Adger, W. N., Pettenella, D. & Whitby, M.), pp. 159169. Wallingford, UK: CAB International.Google Scholar
Luo, J., De Klein, C. A. M., Ledgard, S. F. & Saggar, S. (2010). Management options to reduce nitrous oxide emissions from intensively grazed pastures: a review. Agriculture, Ecosystems and Environment 136, 282291.CrossRefGoogle Scholar
Macdonald, K. A., Penno, J. W., Nicholas, P. K., Lile, J. A., Coulter, M. & Lancaster, J. A. S. (2001). Farm systems-impact of stocking rate on dairy farm efficiency. Proceedings of the New Zealand Grassland Association 63, 223227.CrossRefGoogle Scholar
Macdonald, K. A., Penno, J. W., Lancaster, J. A. S. & Roche, J. R. (2008). Effect of stocking rate on pasture production, milk production and reproduction of dairy cows in pasture-bases systems. Journal of Dairy Science 91, 21512163.CrossRefGoogle ScholarPubMed
Microsoft Corporation (2000). Microsoft Excel. Redmond, WA, USA: Microsoft Corporation. Available from: http://www.microsoft.com/excel (verified 23 April 2013).Google Scholar
Mcgettigan, M., Duffy, P. & Hyde, B. (2009). Ireland Informative Inventory Report 2009. Air pollutant emissions in Ireland 1990–2007. Reported to the Secretariat of the UNECE Convention on Long Range Transboundary Air Pollution. Wexford, Ireland: EPA.Google Scholar
Mcgettigan, M., Duffy, P., Hyde, B., Hanley, E., O'Brien, P., Ponzi, J. & Black, K. (2010). Ireland National Inventory Report 2010. Greenhouse Gas Emissions 1990–2008. Reported to The United Nations Framework Convention on Climate Change. Wexford, Ireland: Environmental Protection Agency.Google Scholar
Murphy, B. M., Drennan, M. J., O' Mara, F. P. & Mcgee, M. (2008 a). Performance and feed intake of five beef suckler cow genotypes and pre-weaning growth of their progeny. Irish Journal of Agricultural and Food Research 47, 1325.Google Scholar
Murphy, B. M., Drennan, M. J., O' Mara, F. P. & Mcgee, M. (2008 b). Post-weaning growth, ultrasound and skeletal measurements, muscularity scores and carcass traits and composition of progeny of five beef suckler cow genotypes. Irish Journal of Agricultural and Food Research 47, 2740.Google Scholar
Neufeldt, H., Schafer, M., Angenendt, E., Li, C., Kaltschmitt, M. & Zeddies, J. (2006). Disaggregated greenhouse gas emission inventories from agriculture via a coupled economic-ecosystem model. Agriculture, Ecosystems and Environment 112, 233240.CrossRefGoogle Scholar
Nguyen, T. L. T., Hermansen, J. E. & Mogensen, L. (2010). Environmental consequences of different beef production systems in the EU. Journal of Cleaner Production 18, 756766.CrossRefGoogle Scholar
OECD/FAO (2012). OECD/FAO Agricultural Outlook 2012–2021. Paris, France & Rome: OECD Publishing and FAO. Available from: http://dx.doi.org/10.1787/agr_outlook-2012-en (verified 23 April 2013).Google Scholar
O'Mara, F. P., Caffery, P. J. & Drennan, M. J. (1997). Net energy values of grass silage determined from comparative feeding trials. Irish Journal of Agricultural and Food Research 36, 110.Google Scholar
Pelletier, N., Pirog, R. & Rasmussen, R. (2010). Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States. Agricultural Systems 103, 380389.CrossRefGoogle Scholar
Peters, G. M., Rowley, H. V., Wiedemann, S., Tucker, R., Short, M. D. & Schulz, M. (2010). Red meat production in Australia: life cycle assessment and comparison with overseas studies. Environmental Science and Technology 44, 13271332.CrossRefGoogle ScholarPubMed
Pre Consultants (2012). SimaPro 7.2 method. In Database Manual. Amersfoort, The Netherlands: Pré Consultants B.V.Google Scholar
Rotz, C. A., Mertens, D. R., Buckmaster, D. R., Allen, M. S. & Harrison, J. H. (1999). A dairy herd model for use in whole farm simulations. Journal of Dairy Science 82, 28262840.CrossRefGoogle ScholarPubMed
Roy, P., Orikasa, T., Thammawong, M., Nakamura, N., Xu, Q. & Shiina, T. (2012). Life cycle of meats: an opportunity to abate the greenhouse gas emission from meat industry in Japan. Journal of Environmental Management 93, 218224.CrossRefGoogle ScholarPubMed
Schulte, R. & Donnellan, T. (Eds) (2012). A Marginal Abatement Cost Curve for Irish Agriculture. Teagasc submission to the National Climate Policy Development Consultation. Carlow, Ireland: Teagasc.Google Scholar
Schulte, R. P. O., Lanigan, G. & Gibson, M. (Eds) (2011). Irish Agriculture, Greenhouse Gas Emission and Climate Change, Opportunities, Obstacles and Proposed Solutions. Teagasc working group on greenhouse gas emissions. Carlow, Ireland: Teagasc.Google Scholar
Shalloo, L., O' Donnell, S. & Horan, B. (2007). Profitable dairying in an increased EU milk quota scenario. In Exploiting the Freedom to Milk: Proceedings of the National Dairy Conferences 2007, 21–22 November 2007, Kilkenny and Mayo, pp. 2044. Carlow, Ireland: Teagasc.Google Scholar
Steen, R. W. J. (1995). The effect of plane of nutrition and slaughter weight on growth and food efficiency in bulls, steers and heifers of three breed crosses. Livestock Production Science 42, 111.CrossRefGoogle Scholar
Stewart, A. A., Little, S. M., Ominski, K. H., Wittenberg, K. M. & Janzen, H. H. (2009). Evaluating greenhouse gas mitigation practices in livestock systems: an illustration of a whole-farm approach. Journal of Agricultural Science, Cambridge 147, 367382.CrossRefGoogle Scholar
Tilman, D., Balzer, C., Hill, J. & Befort, B. L. (2010). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences USA 108, 2026020264.CrossRefGoogle Scholar
Veysset, P., Lherm, M. & Bebin, D. (2010). Energy consumption, greenhouse gas emissions and economic performance assessments in French Charolais suckler cattle farms: model-based analysis and forecasts. Agricultural Systems 103, 4150.CrossRefGoogle Scholar
Weissbach, F. & Peters, G. (1983). Quantity, chemical composition and feed value of silage effluent. Feldwirtschaft 24, 7881.Google Scholar
White, T. A., Snow, V. O. & King, W. M. C. G. (2010). Intensification of New Zealand beef farming systems. Agricultural Systems 103, 2135.CrossRefGoogle Scholar
Wims, C. M., Deighton, M. H., Lewis, E., O'Loughlin, B., Delaby, L., Boland, T. M. & O'Donovan, M. (2010). Effect of pregrazing herbage mass on methane production, dry matter intake, and milk production of grazing dairy cows during the mid-season period. Journal of Dairy Science 93, 49764985.CrossRefGoogle ScholarPubMed
Wood, S. & Cowie, A. (2004). A Review of Greenhouse Gas Emission Factors for Fertiliser Production. For IEA Bioenergy Task 38. Research and Development Division, State Forests of New South Wales, Cooperative Research Centre for Greenhouse Gas Accounting. Paris, France: IEA. Available from: http://www.ieabioenergy-task38.org/publications/GHG_Emission_Fertilizer%20Production_July2004.pdf (verified 21 December 2012).Google Scholar
Yan, T., Agnew, R. E., Gordon, F. J. & Porter, M. G. (2000). Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livestock Production Science 64, 253263.CrossRefGoogle Scholar
Yan, T., Frost, J. P., Keady, T. W., Agnew, R. E. & Mayne, C. S. (2007). Prediction of nitrogen excretion in faeces and urine of beef cattle offered diets containing grass silage. Journal of Animal Science 85, 19821989.CrossRefGoogle ScholarPubMed
Yan, T., Porter, M. G. & Mayne, C. S. (2009). Prediction of methane emission from beef cattle using data measured in indirect open-circuit respiration calorimeters. Animal 3, 14551462.CrossRefGoogle ScholarPubMed