Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-06T03:29:56.706Z Has data issue: false hasContentIssue false

Laboratory study of the availability of nutrients in physical fractions of cattle slurry

Published online by Cambridge University Press:  27 March 2009

F. Díaz-Fierros
Affiliation:
Instituto de Investigaciones Agrobiologicas de Galicia (C.S.I.C.), Apartado 122, Santiago de Compostela, Spain
M. Carmen Villar
Affiliation:
Instituto de Investigaciones Agrobiologicas de Galicia (C.S.I.C.), Apartado 122, Santiago de Compostela, Spain
F. Gil
Affiliation:
Instituto de Investigaciones Agrobiologicas de Galicia (C.S.I.C.), Apartado 122, Santiago de Compostela, Spain
M. Carmen Leirós
Affiliation:
Instituto de Investigaciones Agrobiologicas de Galicia (C.S.I.C.), Apartado 122, Santiago de Compostela, Spain
M. Carballas
Affiliation:
Instituto de Investigaciones Agrobiologicas de Galicia (C.S.I.C.), Apartado 122, Santiago de Compostela, Spain
Tarsy Carballas
Affiliation:
Instituto de Investigaciones Agrobiologicas de Galicia (C.S.I.C.), Apartado 122, Santiago de Compostela, Spain
Ana Cabaneiro
Affiliation:
Instituto de Investigaciones Agrobiologicas de Galicia (C.S.I.C.), Apartado 122, Santiago de Compostela, Spain

Summary

The characteristics of three fractions obtained by physical separation from each of 19 cattle slurries are reported, with the aim of investigating their behaviour in the soil. The fraction retained on a 1 mm sieve (F1) was the poorest in nutrient content. The fraction passing through a 1 mm sieve but retained in Richard's apparatus on a cellulose membrane of 2·4 nm pore radius (F2) contains most of the slurry's organic N and Pand most divalent cations (Ca2+ and Mg2+). F3, which passes through the cellulose membrane, contains most of the slurry's inorganic N and most monovalent cations.

The individual fractions are both chemically and physically much more homogeneous than the slurry as a whole, and their relative proportions are well correlated with the slurry's density and dry-matter content (P < 0·001), so that this kind of fractionation may confidently be expected to provide an analytical scheme facilitating research on the behaviour of slurry after its application to soil.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cabaneiro, A., Villar, M. C, Díaz-Fierros, F., Gil, F., Leirós, M. C, Carballas, M. & Carballas, T. (1983). An evaluation of cattle slurry fertilizer in a humic cambisol in Galician (NW Spain). Studies about Humus. Transactions of the VIIIth International Symposium Humus et Planta 2, 291295.Google Scholar
Díaz-Fierros, F., Villar, M. C, Gil, F., Carballas, M., Leirós, M. C. & Carballas, T. (1986). Modification of the mineralization of nitrogen in soil by cattle slurry fractions. Transactions of the XIIIth Congress of the International Society of Soil Science, Hamburg II, 566567.Google Scholar
Fernández-Marcos, M. L. (1985). Contribución al estudio de equilibrios sólido–líquido en Suelos de Galicia. Doctoral thesis, 495 pp, University of Santiago de Compostela (Spain).Google Scholar
Flaig, W., Nagar, B., Sochting, H. & Tietjen, C. (1977). Organic materials and soil productivity. FAO Soils Bulletin 35, 119 pp.Google Scholar
Gaudette, A. & Zizka, J. (1982). La valeur fertilizante des furniers. Rapport du Colloque sur les Fumiers. Goubernement de Quebec, pp. 49.Google Scholar
Gonzaléz-Prieto, S. J., Carballas, M. & Carballas, T. (1984). Characterization of the organic fraction of cattle slurry. II. Fundamental carbon-bearing compounds and distribution of nitrogen. Anales de Edafología y Agrobiología 43, 12231241.Google Scholar
Harrison, A. F. (1979). Phosphorus cycles of forest and upland grassland ecosystems and some effects of land management practices. In Phosphorus in the Environment: its Chemistry and Biochemistry. Ciba Foundation Symposium 57, new Series, pp. 173179. Amsterdam: Excerpta Medica.Google Scholar
Jongebreur, A. A. & Poelma, H. R. (1979). Separation of slurry. In Engineering Problems with Effluents from Livestock (ed. Hawkins, J. C.), pp. 190198. Luxembourg.Google Scholar
Leirós, M. C., Villar, M. C, Cabaneiro, A., Carballas, T., Díaz-Fierros, F., Gil, F. & Gomez Ibarlucea, C. (1983). Caracterización y valor fertilizante de los purines de vacuno en Galicia. Anales de Edafología y Agrobiología 42, 753768.Google Scholar
Medina, A. & Lopez-Hernandez, D. (1978). Method of desorbing soil phosphate for application to P desorption isotherm construction. Tropical Agriculture (Trinidad) 55, 6975.Google Scholar
Murphy, J. & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytical Chemistry Ada 27, 3136.CrossRefGoogle Scholar
Van Dijk, H. (1981). Quelques notices sur l'importance de la minéralisation et de l'immobilisation de l'azote pour les recommendations de fumure. Colloque Humus-Azote. Rapports: Commissions I-IV, INRA, ENSAIA, INPL, Reims, pp. 151160.Google Scholar
Villar, M. C., Díaz-Fierros, F., Cabaneiro, A., Leirós, M. C, Gil, F., Carballas, M. & Carballas, T. (1984). Métodos rápidos para la caracterización del purin de vacuno. Anales de Edafología y Agrobiología 43, 195204.Google Scholar