Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-18T04:41:00.220Z Has data issue: false hasContentIssue false

The impact of climate change on sugarbeet yield in the UK: 1976–2004

Published online by Cambridge University Press:  28 February 2007

K. W. JAGGARD*
Affiliation:
Broom's Barn Research, Higham, Bury St Edmunds, Suffolk IP28 6NP, UK
A. QI
Affiliation:
Broom's Barn Research, Higham, Bury St Edmunds, Suffolk IP28 6NP, UK
M. A. SEMENOV
Affiliation:
Biomathematics & Bioinformatics, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Since the 1970s, the delivered sugar yield per hectare has risen at an average annual rate of 0·111 t/ha, while the sugar yield in the official variety trials has increased at an average annual rate of 0·204 t/ha. These increases are usually considered to be the result of improvements in varieties and in beet agronomy. The present paper considers the possible impact of recent changes in climate on UK sugar yields by using the Broom's Barn Crop Growth Model and daily weather data collected over the last 30 years. Simulations of sugar yield using weather in eastern England since 1976 increased by an average annual rate of 0·139 t/ha, which accounted for about two thirds of the rate in the official variety trials. This increase was not an artefact of the accuracy of weather recording but it was, in part, accounted for by the trend to earlier sowing. Although it was not statistically significant, the earlier sowing trend was associated with an increase of 0·025 t/ha per year and was an indirect effect of the climate change. The annual deviations from these trends have not tended to become significantly bigger or smaller over the three decades. The model is not variety-specific, so it makes no allowance for variety improvements during the last 30 years. Clearly, varieties have improved so the implication must be that some of the changes in agronomy have tended to decrease the yields significantly. The changes in agronomic practice most likely to be responsible are the extension of the crop processing campaign, leading to greater post-harvest storage losses, and a decrease in the irrigated area.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. (1998). Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper No. 56. Rome, Italy: FAO.Google Scholar
Brooks, R. J., Semenov, M. A. & Jamieson, P. D. (2001). Simplifying Sirius: sensitivity analysis and development of a meta-model for wheat yield prediction. European Journal of Agronomy 14, 4360.CrossRefGoogle Scholar
Bruhns, J., Baron, O. & Maier, K. (2005). Sugar Economy Europe 2005. Berlin: Bartens.Google Scholar
Calderini, D. F. & Slafer, G. A. (1998). Changes in yield and yield stability in wheat during the 20th century. Field Crops Research 57, 335347.CrossRefGoogle Scholar
Dunham, R. J., Draycott, A. P. & Messem, A. B. (1993). Irrigation of sugar beet in the United Kingdom. In Proceedings of the 56th Winter Congress of the Institut International de Recherches Betteravières, pp. 2540. Brussels: IIRB.Google Scholar
Ewert, F., Rodriguez, D., Jamieson, P., Semenov, M. A., Mitchell, R. A. C., Goudriaan, J., Porter, J. R., Kimball, B. A., Pinter, P. J., Manderscheid, R., Weigel, H. J., Fangmeier, A., Fereres, E. & Villalobos, F. (2002). Effects of elevated CO2 and drought on wheat: testing crop simulation models for different experimental and climatic conditions. Agriculture, Ecosystems and Environment 93, 249266.CrossRefGoogle Scholar
Gregson, K., Hector, D. J. & McGowan, M. (1987). A one-parameter model for the soil water characteristic. Journal of Soil Science 38, 483486.CrossRefGoogle Scholar
Institut Technique Français De La Betterave Industrielle (ITB) (2003). La Betterave Sucrière: Evolution des Techniques et Aspects Environnementaux. Paris: ITB.Google Scholar
Jaggard, K. W., Clark, C. J. A., May, M. J., McCullagh, S. & Draycott, A. P. (1997). Changes in the weight and quality of sugarbeet (Beta vulgaris) roots in storage clamps on farms. Journal of Agricultural Science, Cambridge 129, 287301.CrossRefGoogle Scholar
Jaggard, K. W., Dewar, A. M. & Pidgeon, J. D. (1998). The relative effects of drought stress and virus yellows on the yield of sugarbeet in the UK, 1980–95. Journal of Agricultural Science, Cambridge 130, 337343.CrossRefGoogle Scholar
Jaggard, K. W., Clark, C. J. A. & Draycott, A. P. (1999). The weight and processing quality of components of the storage roots of sugar beet (Beta vulgaris L.). Journal of the Science of Food and Agriculture 79, 13891398.3.0.CO;2-B>CrossRefGoogle Scholar
Jamieson, P. D. & Semenov, M. A. (2000). Modelling nitrogen uptake and redistribution in wheat. Field Crops Research 68, 2129.CrossRefGoogle Scholar
Jamieson, P. D., Brooking, I. R., Semenov, M. A. & Porter, J. R. (1998 a). Making sense of wheat development: a critique of methodology. Field Crops Research 55, 117127.CrossRefGoogle Scholar
Jamieson, P. D., Semenov, M. A., Brooking, I. R. & Francis, G. S. (1998 b). Sirius: a mechanistic model of wheat response to environmental variation. European Journal of Agronomy 8, 161179.CrossRefGoogle Scholar
Jamieson, P. D., Berntsen, J., Ewert, F., Kimball, B. A., Olesen, J. E., Pinter, P. J., Porter, J. R. & Semenov, M. A. (2000). Modelling CO2 effects on wheat with varying nitrogen supplies. Agriculture, Ecosystems and Environment 82, 2737.CrossRefGoogle Scholar
Jones, P. D., Lister, D. H., Jaggard, K. W. & Pidgeon, J. D. (2003). Future climate impact on the productivity of sugar beet (Beta vulgaris L.) in Europe. Climatic Change 58, 93108.CrossRefGoogle Scholar
Keeling, C. D. & Whorf, T. P. (2005). Atmospheric CO2 records from sites in the SIO air sampling network. In Trends '93: A Compendium of Data on Global Change (Eds Boden, T. A., Kaiser, D. P., Sepanski, R. J. & Stoss, F. W.), pp. 128. ORNL/CDIAC-65. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy.Google Scholar
Lawless, C., Semenov, M. A. & Jamieson, P. D. (2005). A wheat canopy model linking leaf area and phenology. European Journal of Agronomy 22, 1932.CrossRefGoogle Scholar
Long, S. P., Ainsworth, E. A., Rogers, A. & Ort, D. R. (2004). Rising atmospheric carbon dioxide: plants FACE the future. Annual Review of Plant Biology 55, 591628.CrossRefGoogle ScholarPubMed
Manderscheid, R. & Weigel, H. J. (2006). Responses of cereals and sugar beet grown in a multi-year crop rotation to free air CO2 enrichment. Bibliotheca Fragmenta Agronomica 11, 309310.Google Scholar
Märländer, B., Hoffmann, C., Koch, H. J., Ladewig, E., Merkes, R., Petersen, J. & Stockfisch, N. (2003). Environmental situation and yield performance of the sugar beet crop in Germany: heading for sustainable development. Journal of Agronomy and Crop Science 189, 201226.CrossRefGoogle Scholar
Öfversten, J., Jauhiainen, L. & Kangas, A. (2004). Contribution of new varieties to cereal yields in Finland between 1973 and 2003. Journal of Agricultural Science, Cambridge 142, 281287.CrossRefGoogle Scholar
Qi, A., Kenter, C., Hoffmann, C. & Jaggard, K. W. (2005). The Broom's Barn sugar beet growth model and its adaptation to soils with varied available water content. European Journal of Agronomy 23, 108122.CrossRefGoogle Scholar
Richter, G. M. & Semenov, M. A. (2005). Modelling impacts of climate change on wheat yields in England and Wales: assessing drought risks. Agricultural Systems 84, 7797.CrossRefGoogle Scholar
Richter, G. M., Qi, A., Semenov, M. A. & Jaggard, K. W. (2006). Modelling the variability of UK sugar beet yields under climate change and husbandry adaptations. Soil Use and Management 22, 3947.CrossRefGoogle Scholar
Scott, R. K. & Jaggard, K. W. (1992). Crop growth and weather: can yield forecasts be reliable? In Proceedings of the 55th Winter Congress of the IIRB, pp. 169187. Brussels: IIRB.Google Scholar
Scott, R. K. & Jaggard, K. W. (2000). Impact of weather, agronomy and breeding on yields of sugarbeet grown in the UK since 1970. Journal of Agricultural Science, Cambridge 134, 341352.CrossRefGoogle Scholar
Sparks, T. H., Croxton, P. J., Collinson, N. & Taylor, P. W. (2005). Examples of phenological change, past and present, in UK farming. Annals of Applied Biology 146, 531537.CrossRefGoogle Scholar
Weatherhead, E. K. & Danert, K. (2002). Survey of Irrigation of Outdoor Crops in 2001. Silsoe, England: Cranfield University.Google Scholar
Wheeler, T. R., Ellis, R. H., Hadley, P., Morison, J. I. L., Batts, G. R. & Daymond, A. J. (1996). Assessing the effects of climate change on field crop production. Aspects of Applied Biology 45, 4954.Google Scholar
Wolf, J., Evans, L. G., Semenov, M. A., Eckersten, H. & Iglesias, A. (1996). Comparison of wheat simulation models under climate change. 1. Model calibration and sensitivity analyses. Climate Research 7, 253270.CrossRefGoogle Scholar