Published online by Cambridge University Press: 09 May 2005
Four field experiments over 2 years investigated whether wheat hybrids had higher nitrogen-use efficiency (NUE) than their parents over a range of seed rates and different N regimes. There was little heterosis for total N in the above-ground biomass (NYt), but there was high-parent heterosis for grain N yields (NYg) in two of the hybrids, Hyno Esta and Hyno Rista, associated with greater nitrogen harvest index (NHI). Overall, the hybrids did not significantly increase the total dry matter produced per unit N in the above-ground crop (NUtEt), but did increase the grain dry matter per unit N in the above ground crop (NUtEg). The improvement in NUtEg was at the partial detriment of grain N concentration. Heterosis for grain NYg in Hyno Esta was lower at zero-N, suggesting that it did not achieve higher yields through more efficient capture or utilization of N. The greater NHI in Hyno Esta appeared to be facilitated by both greater N uptake, and remobilization of N from vegetative tissues, after anthesis.
The response of N efficiency and uptake to seed rate was dependent on N supply and season. Where N fertilizer was applied, N uptake over time was slower at the lower seed rates, but where N was withheld N capture at the lowest seed rate soon approached the N capture of the higher seed rates. During grain filling, the rate of accumulation of N into the grain increased with seed rate and the duration of N accumulation decreased with seed rate. With N applied, N yields increased to an asymptote with seed rate, when N was withheld there was little response of N yields to seed rate. In 2002, N utilization efficiency (NUtEt and NUtEg) also increased asymptotically with seed rate, but in 2003 seed rate had little effect on N utilization efficiency. When nitrogen fertilizer had not been applied, NHI consistently decreased with increasing seed rate. The timing of N application made little difference to NUE, NY, or NUtE.