Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-06T03:22:17.617Z Has data issue: false hasContentIssue false

Growth and chemical composition of carrots as influenced by the time of sowing and harvest

Published online by Cambridge University Press:  27 March 2009

T. Nilsson
Affiliation:
Swedish University of Agricultural Science, Department of Horticultural Science, S-230 53 Alnarp, Sweden

Summary

The effects of the time of sowing on growth and chemical composition of carrots grown from May to November were studied during 3 years.

Delaying sowing for 1 or 2 months after the beginning of May resulted in a reduction in the growth of both roots and foliage and gave roots with lower dry-matter content and glucose/fructose ratio but higher amounts of hexoses, total nitrogen and amino nitrogen in root dry matter. Sowing date had no influence on the concentration of sucrose, phosphorus, potassium, calcium and magnesium in root dry matter up to 137 days from sowing. Carotene decreased only after the last sowing. Sucrose concentration of the roots increased throughout the periods studied irrespective of the time of sowing. The longer the growing period the higher was the sucrose concentration. The concentration of hexoses decreased from the first harvest at 70 days to reach a constant level at about 130 days from sowing.

The results did not indicate the presence of a well-defined stage of biochemical maturity in the autumn when carrot roots are expected as most suitable for harvest and subsequent long-term storage.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon. (1984). Methods of Enzymatic Food Analysis. Mannheim, West Germany: Boehringer Mannheim GmbH Biochemica.Google Scholar
Apeland, J. & Hoftun, H. (1974). Effects of temperature regimes on carrot during storage. Acta Horticulturae 38, 291299.CrossRefGoogle Scholar
Banga, O. &. De Bruyn, J. W. (1964). Carotenogenesis in carrot roots. Netherlands Journal of Agricultural Science 12, 204220.CrossRefGoogle Scholar
Daie, J. (1984). Characterization of sugar transport in storage tissue of carrot. Journal of the American Society for Horticultural Science 109, 718722.CrossRefGoogle Scholar
Fritz, D. & Habben, J. (1977). Einfluss des Ernteszeitpunktes auf die Qualität verschiedener Möhrensorten. Gartenbauwissenschaft 42, 185190.Google Scholar
Fritz, D. & Weichmann, J. (1979). Influence of the harvesting date of carrots on quality preservation. Acta Horticulturae 93, 91100.CrossRefGoogle Scholar
Gorin, N. (1970). Enzymatic analysis of glucose, fructose and sucrose. Annual Report Sprenger Institute, Wageningen, The Netherlands, pp. 8689.Google Scholar
Gorin, N. (1979). Enzymatic and high pressure liquid chromatographic estimation of glucose, fructose and sucrose in powders from stored onions. Journal of Agricultural and Food Chemistry 27, 195197.Google Scholar
Goris, M. A. (1969 a). The sugars in the root of the cultivated carrot (cultivar Nantaise demi-longue) seasonal and climatological variations, distributions in the tissues, alterations during stockage. Qualitas Plantarum 18, 283306.Google Scholar
Goris, M. A. (1969 b). Métabolisme glucidique de la racine de carotte cultivée (Variété Nantaise demi-longue) aucours du cycle végétatif de la plante. Qualitas Plantarum 18, 307330.Google Scholar
Grant, B. R. & Beevers, H. (1964). Absorption of sugars by plant tissues. Plant Physiology 39, 7885.Google Scholar
Greenwood, D. J. & Barnes, A. (1978). A theoretical model for the decline in the protein content in plants during growth. Journal of Agricultural Science, Cambridge 91, 461466.Google Scholar
Habben, J. (1972). Einfluss einiger Standortfaktorcn auf Ertrag und Qualität der Möhre (Daucus carota L.). Gartenbauwissenschaft 37, 345359.Google Scholar
Hole, C. C., Thomas, T. H. & McKee, J. M. T. (1984). Sink development and dry matter distribution in storage root crops. Plant Growth Regulation 2, 347358.Google Scholar
Krahn, I. R. (1974). Long term storage of perishable vegetables. Acta Horticulturae 38, 443450.CrossRefGoogle Scholar
Lamprecht, H. & Svensson, V. (1950). Karotinhalten i morötter och dess beroende av olika faktorer. Agri Hortique Genetica 8, 74108.Google Scholar
Lester, G. E., Baker, L. R. & Kelly, J. F. (1982). Physiology of sugar accumulation in carrot breeding lines and cultivars. Journal of the American Society for Horticultural Science 107, 381387.CrossRefGoogle Scholar
Linser, H. & Zeid, F. A. (1972). System und Produkt in der Entwicklung von Daucus carota. Zeitschrift für Pflanzenernährung und Bodenkunde 131, 273288.Google Scholar
List, D. & Asker, A. (1977). Organische Säuren in Gemüse und ihre Bedeutung für den Stoffwechsel in Bezug auf Waehstum, Reifung und Lagerung. III. Möhren und Rote Beete. Chemie Mikrobiologie Technologie der Lebensmittel 5, 5764.Google Scholar
McKee, J. M. T., Thomas, T. H. & Hole, C. C. (1984). Growth regulator effects on storage root development in carrot. Plant Growth Regulation 2, 359369.CrossRefGoogle Scholar
Milford, G. J. F. (1973). The growth and development of the storage root of sugar beet. Annals of Applied Biology 75, 427438.,CrossRefGoogle Scholar
Milford, G. F. J. & Lenton, J. R. (1976). Effect of photoperiod on growth of sugar beet. Annals of Botany 40, 13091315.Google Scholar
Milford, G. F. J. & Thorne, G. N. (1973). The effect of light and temperature late in the season on the growth of sugar beet. Annals of Applied Biology 75, 419425.CrossRefGoogle Scholar
Nelson, D. W. & Sommers, L. E. (1973). Determination of total nitrogen in plant material. Agronomy Journal 65, 109112.Google Scholar
Nordkvist, E. (1981). Variationer i kostfiber- och stärkelsehalt i morötter vid olika vegetationstider. Mimeograph, Department of Chemistry and Molecular Biology, Swedish University of Agricultural Sciences, Uppsala.Google Scholar
Phan, C. T. & Hsu, H. (1973). Physiological and chemical changes occurring in the carrot root during growth. Canadian Journal of Plant Science 53, 629634.Google Scholar
Platenius, H. (1934). Physiological and chemical changes in carrots during growth and storage. Cornell University Agricultural Experimental Station, Memorial 161, 317.Google Scholar
Ricardo, C. P. P. (1974). Alkaliney β fructofuranosidases of tuberous roots: possible physiological function. Planta (Berlin) 118, 333343.Google Scholar
Ricardo, C. P. P. & ap Rees, T. (1970). Invertase activity during the development of carrot roots. Phytochemistry 9, 239247.Google Scholar
Ricardo, C. P. P. & Sovia, D. (1974). Development of tuberous roots and sugar accumulation as related to invertase activity and mineral nutrition. Planta (Berlin) 118, 4355.CrossRefGoogle ScholarPubMed
Rosen, H. (1957). A modified ninhydrin colorimetric analysis for amino acids. Archives of Biochemistry and Biophysics 67, 1015.CrossRefGoogle ScholarPubMed
Steingröver, E. (1981). The relationship between cyanideresistant root respiration and the storage of sugars in the taproot in Daucus carota L. Journal of Experimental Botany 32, 911919.CrossRefGoogle Scholar
Steingröver, E. (1983). Storage of osmotically active compounds in the taproot of Daucus carota L. Journal of Experimental Botany 34, 425433.CrossRefGoogle Scholar
Thomas, T. H. (1982). Distribution of assimilates in root crops. National Vegetable Research Station Annual Report for 1982, pp. 8889.Google Scholar
Umiel, N. & Gabelman, W. H. (1971). Analytical procedures for detecting carotenoids of carrot (Daucus carota L.) roots and tomato (Lycopersicum esculentum) fruits. Journal of the American Society for Horticultural Science 96, 702704.CrossRefGoogle Scholar
van den Berg, L. & Lentz, C. P. (1966). Effect of temperature, relative humidity and atmospheric composition on changes in quality of carrots during storage. Food Technology 20, 954957.Google Scholar
van den Berg, L. & Lentz, C. P. (1973). High humidity storage of carrots, parsnip, rutabagas and cabbage. Journal of the American Society for Horticultural Science 98, 129132.Google Scholar
Ward, G. M. & Johnston, F. B. (1962). Chemical methods of plant analysis. Canada Department of Agriculture, Ottawa, Ontario, Processed Publication, 1064.Google Scholar
Watson, D. J., Motomatsu, T., Loach, K. & Milford, G. F. J. (1972). Effects of shading and seasonal differences in weather on the growth, sugar content and sugar yield of sugar-beet crops. Annals of Applied Biology 71, 159185.CrossRefGoogle Scholar
Wilcockson, S. J., Allen, E. J., Scott, R. K. & Wurr, D. C. E. (1985). Effects of crop husbandry and growing conditions on storage losses of Pentland Crown potatoes. Journal of Agricultural Science, Cambridge 105, 413435.CrossRefGoogle Scholar