Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T15:54:53.294Z Has data issue: false hasContentIssue false

Growth analysis of the domestic fowl: III. Effect of plane of nutrition on carcass composition of cockerels and egg yields of pullets

Published online by Cambridge University Press:  27 March 2009

P. N. Wilson
Affiliation:
Wye College, University of London*

Extract

1. 101 Rhode Island Red × Light Sussex chickens have been made to conform to four major changes in the shape of their growth curves from hatching to twenty-four weeks, by control of their plane of nutrition. The four treatments (HH), (LH), (HL) and (LL), allowed comparisons to be made between birds of the same age, but different weights. As the main concern has been to find the essential nature rather than the precise extent of the effects produced by different planes of nutrition, the treatment differences were made as extreme as possible without allowing the rations to become unbalanced.

2. Certain individual organs and tissues, the gonads, thyroid and thymus, and the combs and wattles have reacted differentially to the contrasted treatments when compared on a basis of equal body weight. All the organs, with the exception of the very early maturing eyes and heart, have reached significantly different weights on the basis of equal age. Those organs which have yielded treatment differences judged on both the basis of equal weight or equal age have all been late maturing. The results therefore indicate that the effect of treatment has been to restrict the development of the later maturing parts in the case of the low-plane birds, and to accelerate the development of these organs when the birds are reared on the high plane. The results are insensitive to any differential effects which may have been brought about in the early maturing organs, since the design of the experiment did not allow of the slaughtering of birds at equal weight but only at equal age. The means of Comparison of differences at equal weights was the less precise method of ascertaining whether the high- and low-plane regression lines of weight of part to total weight of bird differed significantly the one from the other.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ackerson, C. W. & Blish, M. L. (1940). Res. Bull. Neb. Agric. Exp. Sta. no. 108, 12.Google Scholar
Aleinlkov, P. (1938). Trans. All-Un. Inst. Poult. Indust. Moscow, 3, 1.Google Scholar
Anderson, D. H. (1932). Physiol.Rev. 12, 1.CrossRefGoogle Scholar
Aron, H. (1911). Philipp. J. Sci. 6, 1.Google Scholar
Asmundson, V. S. (1943). Poult. Sci. 23, 21.CrossRefGoogle Scholar
Asmundson, V. S. & Lerner, L. M. (1942). Poult. Sci. 21, 1.Google Scholar
Bethke, R. M., Pensock, J. M. & Kennard, D. C. (1947). Poult. Sci. 26, 128.CrossRefGoogle Scholar
Bird, S. (1943). Sci. Agric. 24, 135.Google Scholar
Bird, S. (1945). U.S. Egg Poult. Mag. 51, 206.Google Scholar
Bibd, S. (1948). Poult. Sci. 27, 506.Google Scholar
Bird, S. & Novikoff, P. (1947). Poult. Sci. 26, 668.CrossRefGoogle Scholar
Bonsma, F. N. (1939). Univ. Pretoria Publ., Series 1, Agriculture, no. 48.Google Scholar
Bradley, O. C. (1915). The Structure of the Fowl. London: A. and C. Black.CrossRefGoogle Scholar
Brody, S. (1927). Res. Bull. Mo. Agric. Exp. Sta., no. 97.Google Scholar
Brody, S. (1945). Bionergetics and Growth. New York: Reinhold Publ. Co.Google Scholar
Buckner, G. D., Welkins, R. H. & Castle, J. H. (1918). Amer. J. Physiol. 47, 393.CrossRefGoogle Scholar
Callow, E. H. (1935). Emp. J. Exp. Agric. 3, 80.Google Scholar
Chamberlain, F. W. (1938). Mem. Mich. Agric. Exp. Sta. no. 5.Google Scholar
Chirvinsky, H. P. (1909). Poleteknic. Inst. 2., Kiev.Google Scholar
Donald, H. P. (1940). Isogenic Sci. 30, 583.Google Scholar
Donald, H. P. & McLean, J. W. (1935). N. Z. J. Sci. Tech. 17, 497.Google Scholar
Feller, W. (1940). Acta biotheor., Leiden, 5 (2), 51.CrossRefGoogle Scholar
Fraps, G. S. (1946). Bull. Texas Agric. Exp. Sta. no. 678.Google Scholar
Frischknecht, C. & Jull, M. A. (1946). Poult. Sci. 25, 330.CrossRefGoogle Scholar
Funk, E. M. H. (1930). Poult. Sci. 9, 157.CrossRefGoogle Scholar
Gutteridge, H. S. & O'Neill, J. B. (1942). Sci. Agric. 22, 378.Google Scholar
Hale, R. W. (1931). J. Agric. Sci. 21, 716.CrossRefGoogle Scholar
Halnan, E. T. (1939). Scientific Principles of Poultry Feeding. H.M.S.O. Bull. 7.Google Scholar
Halnan, E. T. & Marshall, F. H. A. (1914). Proc. Roy. Soc. B, 88, 1.Google Scholar
Hammond, J. (1922). J. Agric. Sci. 12, 387.CrossRefGoogle Scholar
Hammond, J. (1927). Pig. Breed. Annu. 7, 76.Google Scholar
Hammond, J. (1929). Actes 14th Congr. Int. Agric. Bucarest, Sect. 5.Google Scholar
Hammond, J.(1932 a). Growth and Development of Mutton Qualities in the Sheep. Edinburgh.Google Scholar
Hammond, J. (1932 b). J. R. Agric. Soc. 93, 131.Google Scholar
Hammond, J. (1933). Pig Breed. Annu. 13, 28.Google Scholar
Hammond, J. (1935). Emp. J. Exp. Agric. 3, 1.Google Scholar
Hammond, J. (1937). Proc. Int. Sheep Breed. Conf. Wolverhampton.Google Scholar
Hammond, J. (1943). Proc. Nutrit. Soc. 2, 8.Google Scholar
Hammond, J. (1950). Proc. Roy. Soc. B, 137, 889.Google Scholar
Hammond, J. & Murray, G. N. (1937). J. Agric. Sci. 27, 394.CrossRefGoogle Scholar
Hatai, S. (1914). Amer. J. Anat. 16, 251.CrossRefGoogle Scholar
Hazel, L. N. & Lamoreux, W. F. (1947). Poult. Sci. 26, 508.CrossRefGoogle Scholar
Heller, V. G. & Penquite, R. (1945). Poult. Sci. 24, 465.CrossRefGoogle Scholar
Henderson, J. (1904). J. Physiol. 31, 222.CrossRefGoogle Scholar
Hill, D. C., Slinger, S. J. & Motzok, I. (1944). Poult. Sci. 23, 461.CrossRefGoogle Scholar
Huxley, J. S. (1932). Problems of Relative Growth. London.Google Scholar
Huxley, J. S. (1950). Personal communication.Google Scholar
Huxley, J. S., Needham, J. & Lerner, I. M. (1941). Nature, Lond., 148, 225.CrossRefGoogle Scholar
Jackson, C. M. (1913). Amer. J. Anat. 15, 1.CrossRefGoogle Scholar
Jackson, C. M. (1914). ‘Morphogenesis’. In Morris, , Human Anatomy, 5th ed.Philadelphia.Google Scholar
Jackson, C. M. & Lowrey, L. G. (1912). Anat. Rec. 6, 449.CrossRefGoogle Scholar
Joseph, N. (1908). Exp. Med. 10, 521.CrossRefGoogle Scholar
Jull, M. A. & Maw, A. J. G. (1923). Sci. Agric. 3, 329.Google Scholar
Kaupp, B. F. (1918). Anatomy of the Domestic Fowl. Philadelphia: W. B. Saunders.CrossRefGoogle Scholar
Kaupp, B. F. (1916). Bull. Agric. Exp. Sta. 235, 12.Google Scholar
Kudo, T. (1921). J. Exp. Zool. 33, 97.CrossRefGoogle Scholar
Kumaran, J. D. S. & Turner, C. W. (1949). Poult. Sci. 28, 593.CrossRefGoogle Scholar
Latimer, H. B. (1924). J. Agric. Res. 29, 363.Google Scholar
Latimer, H. B. (1927). Amer. J. Anal. 40, 2.CrossRefGoogle Scholar
Lawes, J. B. & Gilbert, J. A. (1859). Trans. Roy. Soc. 2, 493.Google Scholar
Le Masurier, H. E. & Branion, H. D. (1939). Poult. Sci. 18, 114.CrossRefGoogle Scholar
Lee, A. R. (1911). Bull. U.S. Dep. Agric. Bur. Anim. Indust. no. 140.Google Scholar
Lerner, I. M. (1937). J. Agric. Sci. Calif. Agric. Exp. Sta. 10, 13.Google Scholar
Lerner, I. M. (1943). J. Agric. Res. 67, 11.Google Scholar
Lerner, I. M. & Asmundson, V. S. (1938). Poult. Sci. 17, 286.CrossRefGoogle Scholar
Lillie, F. (1919). The Development of the Chick. New York: Henry Holt.Google Scholar
Lloyd, M. D., Reed, C. A. & Fritz, J. C. (1949). Poult. Sci. 28, 1.CrossRefGoogle Scholar
McCarrison, R. (1921). Studies in Deficiency Diseases. London.Google Scholar
McCoy, C. M. & Maynard, L. A. (1941). J. Nutrit. 21, 43.Google Scholar
McKenzie, F. F. (1926). Res. Bull. Mo. Agric. Exp. Sta. no. 86.Google Scholar
McKittrick, D. S. (1947). Growth, 11, (2) 89.Google ScholarPubMed
McMeekan, C. P. (1937). N. Z. J. Agric. 54, 147, 223.Google Scholar
McMeekan, C. P. (1940). J. Agric. Sci. 30, 279.Google Scholar
McMeekan, C. P. (1941). J. Agric. Sci. 31, 1.CrossRefGoogle Scholar
McNally, E. H. & Spicknall, N. H. (1948). Poult. Sci. 28, 4.Google Scholar
Maw, A. J. G. & Maw, S. (1939). Sci. Agric. 19, 589.Google Scholar
Minot, C. S. (1907). Pop. Sci. Mon. 70, 481; 71, 97.Google Scholar
Mitchell, H. H., Card, L. E. & Hamilton, J. S. (1926). Bull. Ill. Agric. Exp. Sta. no. 278.Google Scholar
Mitchell, H. H., Card, L. E. & Hamilton, T. S. (1931). Bull. Univ. Ill. Agric. Exp. Sta. 367: 83.Google Scholar
Moment, G. B. (1933). J. Exp. Zool. 65, 359.CrossRefGoogle Scholar
Munro, S. S. & Kosin, I. L. (1939). Sci. Agric. 20, 586.Google Scholar
Murray, H. A. (1925). J. Gen. Physiol. 9, 39.CrossRefGoogle Scholar
Murray, H. A. (1926). J. Gen. Physiol. 9, 539.CrossRefGoogle Scholar
Needham, J. (1933). Biol. Rev. 8, 180.CrossRefGoogle Scholar
Outhouse, J. & Mendel, L. B. (1933). J. Exp. Zool. 64, 257.CrossRefGoogle Scholar
Pálsson, H. (1939). J. Agric. Sci. 29, 544.CrossRefGoogle Scholar
Pálsson, H. (1940). J. Agric. Sci. 30, 1.CrossRefGoogle Scholar
Pálsson, H. & Vergés, J. B. (1952). J. Agric. Sci. 42, 1.CrossRefGoogle Scholar
Panse, V. (1946). J. Genetics, 47 (3), 242.CrossRefGoogle Scholar
Petrov, V. A. (1886). Russk. Med. St Petersburg, 11, 615.Google Scholar
Phillips, R. W. & Dawson, W. M. (1937). Proc. Amer. Soc. Anim. Prod. p. 298.Google Scholar
Pomeroy, R. W. (1941). J. Agric. Sci. 31, 50.CrossRefGoogle Scholar
Riddle, A. (1918). Anat. Rec. 14, 283.CrossRefGoogle Scholar
Roberts, R. E. & Carrick, C. W. (1943). Poult. Sci. 22, 425.CrossRefGoogle Scholar
Robertson, T. B. (1908). Arch. Entw. Mech. Org. 25, 581.Google Scholar
Robinson, P. (1948). J. Agric. Sci. 38, 345.CrossRefGoogle Scholar
Scammon, R. E. (1920). Anat. Rec. 18, 256.Google Scholar
Schroeder, C. H. & Lawrence, H. B. (1932). Poult. Sci. 11, 208.CrossRefGoogle Scholar
Scott, H. M. & Singsen, E. P. (1947). Poult. Sci. 26, 535.Google Scholar
Smith, A. H. & Schultz, R. V. (1930). Amer. J. Physiol. 94, 107.CrossRefGoogle Scholar
Stefanowska, P. (1905). C. R. Acad. Sci., Paris, 141, 269.Google Scholar
Stewart, C. A. (1919). Amer. J. Physiol. 58, 67.CrossRefGoogle Scholar
Trowbridge, P. F., Moulton, C. R. & Haig, L. D. (19181923). Res. Bull. Mo. Agric. Exp. Sta. nos. 30, 43, 54, 55, 61.Google Scholar
Upp, C. W. (1928). Poult. Sci. 7, 151.CrossRefGoogle Scholar
Virchow, L. (1891). Int. Beitr. wiss. Med. 223.Google Scholar
Waddington, C. H. (1950). Proc. Roy. Soc. B, 137, 889.Google Scholar
Wallace, L. R. (1948). J. Agric. Sci. 38, 93, 368.CrossRefGoogle Scholar
Waters, H. J. (1910). Rep. Kans. St. Bd. Agric. no. 113.Google Scholar
Weiske, H. (1889). Landw. Versuchsw. 36, 81.Google Scholar
Welcker, H. & Brandt, A. (1903). Arch. Anthrop. Braunshw. 28, 1.Google Scholar
Wilson, P. N. (1952). J. Agric. Sci. 42, 369.CrossRefGoogle Scholar
Wilson, P. N. (1954). J. Agric. Sci. 44, 67.CrossRefGoogle Scholar
Winters, J. C., Smith, A. H. & Mendel, L. B. (1927). Amer. J. Physiol. 80, 576.CrossRefGoogle Scholar
Wishart, J. (1949). Colloques Internationaux du C.N.R.S. 13, 93.Google Scholar
Woodman, A. E., Evans, R. E., Callow, E. H. & Wishart, J. (1936). J. Agric. Sci. 26, 546.CrossRefGoogle Scholar
Zaitsckek, A. (1908). Landw. Jahrb. 37, 150Google Scholar