Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T17:32:39.092Z Has data issue: false hasContentIssue false

Genomic regions affecting fitness of the sweet corn mutant sugary1

Published online by Cambridge University Press:  19 April 2012

A. DJEMEL
Affiliation:
Misión Biológica de Galicia (CSIC), Apartado 28, E-36080 Pontevedra, Spain
M. C. ROMAY
Affiliation:
Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
P. REVILLA
Affiliation:
Misión Biológica de Galicia (CSIC), Apartado 28, E-36080 Pontevedra, Spain
L. KHELIFI
Affiliation:
École Nationale Supérieure Agronomique, Avenue Pasteur, Hassan Badi, El Harrach-Alger 16000, Algérie
A. ORDÁS
Affiliation:
Misión Biológica de Galicia (CSIC), Apartado 28, E-36080 Pontevedra, Spain
B. ORDÁS*
Affiliation:
Misión Biológica de Galicia (CSIC), Apartado 28, E-36080 Pontevedra, Spain
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Mutants often reduce fitness when incorporated into some genotypes, as is the case of the mutant gene sugary1 (su1) in maize (Zea mays L.). Understanding the genetic factors affecting variation in the fitness of a mutant is of major interest from a theoretical point of view and also from a breeder's perspective. The genetic regulation of su1 behaviour was examined in two independent materials. First, populations of two recombinant inbred lines (RIL) were used, belonging to the Nested Association Mapping (NAM) design produced from crosses between the maize inbred B73 and two sweet corn lines (P39 and Il14h) that were genotyped with 1106 single nucleotide polymorphisms (SNPs). These RILs had a group of lines with the su1 allele and another group with the wild allele. At each marker, the allele frequencies of both groups of RILs were compared. Second, an F2 population derived from the cross between A619 (a field maize inbred line) and P39 (a sweet corn inbred line) was characterized with 295 simple sequence repeats (SSRs). In addition, the population was phenotyped for several traits related to viability. A large linkage block was detected around su1 in the RILs belonging to the NAM. Furthermore, significant genomic regions associated with su1 fitness were detected along the 10 maize chromosomes, although the detected effects were small. Quantitative trait loci (QTLs) with effects in multiple traits related to su1 fitness were detected in the F2 population, for example at bin 5·04. Therefore, the present results suggest that the su1 fitness depends on many genes of small effect distributed along the genome, with pleiotropic effects on multiple traits.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alonso Ferro, R. C., Malvar, R. A., Revilla, P., Ordas, A., Castro, P. & Moreno-Gonzalez, J. (2008). Genetics of quality and agronomics traits in hard endosperm maize. Journal of Agricultural Science, Cambridge 146, 551560.CrossRefGoogle Scholar
Badu-Apraku, B., Oyekunle, M., Obeng-Antwi, K., Osuman, A. S., Ado, S. G., Coulibay, N., Yallou, C. G., Abdulai, M., Boakyewaa, G. A. & Didjeira, A. (2012). Performance of extra-early maize cultivars based on GGE biplot and AMMI analysis. Journal of Agricultural Science, Cambridge 150, 475486 (TBC).CrossRefGoogle Scholar
Butler, J. (1977). Viability estimates for sixty tomato mutants. Canadian Journal of Genetics and Cytology 19, 3138.CrossRefGoogle Scholar
Butrón, A., Tarrio, R., Revilla, P., Malvar, R. A. & Ordás, A. (2003). Molecular evaluation of two methods for developing maize synthetic varieties. Molecular Breeding 12, 329333.CrossRefGoogle Scholar
Clegg, M. T., Kahler, A. L. & Allard, R. W. (1978). Estimation of life cycle components of selection in an experimental plant population. Genetics 89, 765792.CrossRefGoogle Scholar
Cisneros-López, M. E., Mendoza-Onofre, L. E., Zavaleta-Mancera, H. A., Gonzalez-Hernandez, V. A., Mora-Aguilera, G., Cordova-Tellez, L. & Hernandez-Martinez, M. (2010). Pollen–pistil interaction, pistil histology and seed production in A×B grain sorghum crosses under chilling field temperatures. Journal of Agricultural Science, Cambridge 148, 7382.CrossRefGoogle Scholar
Djemel, A., Ordás, B., Khelifi, L., Ordás, A. & Revilla, P. (2011). Genetic effects on fitness of the mutant sugary1 in wild-type maize. Journal of Agricultural Science, Cambridge 150, 487496.Google Scholar
Eichten, S. R., Foerster, J. M., De Leon, N., Kai, Y., Yeh, C. T., Liu, S., Jeddeloh, J. A., Schnable, P. S., Kaeppler, S. M. & Springer, N. M. (2011). B73-Mo17 near-isogenic lines demonstrate dispersed structural variation in maize. Plant Physiology 156, 16791690.CrossRefGoogle ScholarPubMed
Falconer, D. S. (1981). Introduction to Quantitative Genetics, 2nd edn. New York: Longman Inc.Google Scholar
Gad, G. Y. & Juvik, J. A. (2002). Enhancement of seedling emergence in sweet corn by marker-assisted backcrossing of beneficial QTL. Crop Science 42, 96104.Google Scholar
Galinat, W. C. (1978). The inheritance of some traits essential to maize and teosinte. In Maize Breeding and Genetics (Ed. Walden, D. B.), pp. 93111. New York: Wiley.Google Scholar
Garcia-Dorado, A., Monedero, J. L. & Lopez Fanjul, C. (1998). The mutation rate and the distribution of mutational effects of viability and fitness in Drosophila melanogaster. Genetica 102–103, 255265.CrossRefGoogle ScholarPubMed
Graham, G. I., Wolff, D. W. & Stubert, C. W. (1997). Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Science 37, 16011610.CrossRefGoogle Scholar
James, M. G., Robertson, D. S. & Myers, A. M. (1995). Characterization of the maize gene Sugary1, a determinant of starch composition in kernels. Plant Cell 7, 417429.Google ScholarPubMed
Juvik, J. A., Yousef, G. G., Han, T. H., Tadmor, Y., Azanza, F., Tracy, W. F., Barzur, A. & Rocheford, T. R. (2003). QTL influencing kernel chemical composition and seedling stand establishment in sweet corn with the shrunken2 and sugary enhancer1 endosperm mutations. Journal of American Society for Horticultural Science 128, 864875.CrossRefGoogle Scholar
Keightley, P. D. & Hill, W. G. (1990). Variation maintained in quantitative traits with mutation-selection balance: pleiotropic side effects on fitness traits. Proceedings of the Royal Society of London. Series B: Biological Sciences 242, 95100.Google Scholar
Le Gac, M. & Doebeli, M. (2010). Epistasis and frequency dependence influence the fitness of an adaptative mutation in a diversifying lineage. Molecular Ecology 19, 24302438.Google Scholar
Liu, Y. G. & Whittier, R. F. (1994). Rapid preparation of megabase plant DNA from nuclei in agarose plugs and microbeads. Nucleic Acids Research 22, 21682169.CrossRefGoogle ScholarPubMed
Lu, H., Romero-Severson, J. & Bernardo, R. (2002). Chromosomal regions associated with segregation distortion in maize. Theoretical and Applied Genetics 105, 622628.CrossRefGoogle ScholarPubMed
Magwire, M. M., Yamamoto, A., Carbone, M. A., Roshina, N. V., Symonenko, A. V., Pasyukova, E. G., Morozova, T. V. & Mackay, T. F. C. (2010). Quantitative and molecular genetic analyses of mutations increasing Drosophila life span. PLoS Genetics 6, e1001037.CrossRefGoogle ScholarPubMed
Malvar, R. A., Revilla, P., Cartea, M. E. & Ordás, A. (1997). Field corn inbreds to improve sweet corn hybrids for early vigour and adaptation to European conditions. Maydica 42, 247255.Google Scholar
Martins, M. E. Q. P. & Da Silva, W. J. (1998). Genic and genotypic frequencies of endosperm mutants in maize populations under natural selection. Journal of Heredity 89, 516524.CrossRefGoogle Scholar
McMullen, M. D., Kresovich, S., Villeda, H. S., Bradbury, P., Li, H., Sun, Q., Flint-Garcia, S., Thornsberry, J., Acharya, C., Bottoms, C., Brown, P., Browne, C., Eller, M., Guill, K., Harjes, C., Kroon, D., Lepak, N., Mitchell, S. E., Peterson, B., Pressoir, G., Romero, S., Rosas, M. O., Salvo, S., Yates, H., Hanson, M., Jones, E., Smith, S., Glaubitz, J. C., Goodman, M., Ware, D., Holland, J. B. & Buckler, E. S. (2009). Genetic properties of the maize Nested Association Mapping population. Science 325, 737740.CrossRefGoogle ScholarPubMed
Morton, B. R., Bi, I. V., McMullen, M. D. & Gaut, B. S. (2006). Variation in mutation dynamics across the maize genome as a function of regional and flanking base composition. Genetics 172, 569577.CrossRefGoogle ScholarPubMed
Ordás, B., Rodríguez, V. M., Romay, M. C., Malvar, R. A., Ordás, A. & Revilla, P. (2010). Adaptation of super-sweet maize to cold conditions: mutant x genotype interaction. Journal of Agricultural Science, Cambridge 148, 401405.CrossRefGoogle Scholar
Quarrie, S. A., Lazic-Jancic, V., Kovacevic, D., Steed, A. & Pekic, S. (1999). Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. Journal of Experimental Botany 50, 12991306.CrossRefGoogle Scholar
Rebourg, C., Chastanet, M., Gouesnard, B., Welcker, C., Dubreuil, P. & Charcosset, A. (2003). Maize introduction into Europe: the history reviewed in the light of molecular data. Theoretical and Applied Genetics 106, 895903.CrossRefGoogle ScholarPubMed
Revilla, P., Malvar, R. A., Abuin, M. C., Ordás, B., Soengas, P. & Ordás, A. (2000). Genetic background effect on germination of su1 maize and viability of the su1 allele. Maydica 45, 109111.Google Scholar
Revilla, P., Malvar, R. A., Rodriguez, V. M., Butrón, A., Ordás, B. & Ordás, A. (2006). Variation of sugary1 and shrunken2 gene frequency in different maize genetic backgrounds. Plant Breeding 125, 478481.CrossRefGoogle Scholar
Revilla, P., Malvar, R. A., Ordás, B., Rodríguez, V. M. & Ordás, A. (2010). Genotypic effects on field performance of maize plants carrying the allele sugary1. Plant Breeding 129, 9295.CrossRefGoogle Scholar
Revilla, P. & Tracy, W. F. (1995). Isozyme variation and phylogenetic relationships among open-pollinated sweet corn cultivars. Crop Science 35, 219227.CrossRefGoogle Scholar
SAS Institute (2008). The SAS System. Version 9. Cary, NC: SAS Institute.Google Scholar
Schaeffer, M., Byrne, P. & Coe, E. H. Jr. (2006). Consensus quantitative trait maps in maize: a database strategy. Maydica 51, 357367.Google Scholar
Schultz, J. A. & Juvik, J. A. (2004). Current models for starch synthesis and the sugary enhancer1 (se1) mutation in Zea mays. Plant Physiology and Biochemistry 42, 457464.CrossRefGoogle ScholarPubMed
Schön, C. C., Dhillon, B. S., Utz, H. F. & Melchinger, A. E. (2010). High congruency of QTL positions for heterosis of grain yield in three crosses of maize. Theoretical and Applied Genetics 120, 321332.CrossRefGoogle ScholarPubMed
Steel, R. D. G., Torrie, J. H. & Dickey, D. A. (1997). Principles and Procedures in Statistics: A Biometrical Approach, 3rd edn. New York: McGraw Hill.Google Scholar
Tracy, W. F. (1990). Potential of field corn germplasm for the improvement of sweet corn. Crop Science 30, 10411045.CrossRefGoogle Scholar
Tracy, W. F. (2001). Sweet corn. In Specialty Corns (Ed. Hallauer, A. R.), pp. 155199. Boca Raton, FL: CRC Press.Google Scholar
Tracy, W. F., Whitt, S. R. & Buckler, E. S. (2006). Recurrent mutation and genome evolution, example of sugary1 and the origin of sweet maize. Crop Science 46, S49S54.CrossRefGoogle Scholar
Wang, D., Shi, J., Carlson, S. R., Cregan, P. B., Ward, R. W. & Diers, B. W. (2003). A low-cost, high-throughput polyacrylamide gel electrophoresis system for genotyping with microsatellite DNA markers. Crop Science 43, 18281832.CrossRefGoogle Scholar
Yamamoto, A., Anholt, R. R. H. & Mackay, T. F. C. (2009). Epistatic interactions attenuate mutations affecting startle behaviour in Drosophila melanogaster. Genetics Research 91, 373382.CrossRefGoogle ScholarPubMed
Yu, J., Holland, J. B., McMullen, M. D. & Buckler, E. S. (2008). Genetic design and statistical power of Nested Association Mapping in maize. Genetics 178, 539551.CrossRefGoogle ScholarPubMed
Zhang, K., Li, Y. & Lian, L. (2011). Pollen-mediated transgene flow in maize grown in the Huang-huai-hai region in China. Journal of Agricultural Science, Cambridge 149, 205216.CrossRefGoogle Scholar