Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T05:57:42.366Z Has data issue: false hasContentIssue false

Genetics of quality and agronomic traits in hard endosperm maize

Published online by Cambridge University Press:  22 July 2008

R. C. ALONSO FERRO
Affiliation:
Centro de Investigacións Agrarias de Mabegondo (CIAM), Xunta de Galicia, Apartado 10, 15080 A Coruña, Spain
R. A. MALVAR
Affiliation:
Misión Biológica de Galicia (CSIC), Apartado 28, 36080 Pontevedra, Spain
P. REVILLA*
Affiliation:
Misión Biológica de Galicia (CSIC), Apartado 28, 36080 Pontevedra, Spain
A. ORDÁS
Affiliation:
Misión Biológica de Galicia (CSIC), Apartado 28, 36080 Pontevedra, Spain
P. CASTRO
Affiliation:
Centro de Investigacións Agrarias de Mabegondo (CIAM), Xunta de Galicia, Apartado 10, 15080 A Coruña, Spain
J. MORENO-GONZÁLEZ
Affiliation:
Centro de Investigacións Agrarias de Mabegondo (CIAM), Xunta de Galicia, Apartado 10, 15080 A Coruña, Spain
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Hard endosperm maize (Zea mays L.) is useful for industry and for human consumption. The objective of the present work was to study the inheritance of quality traits in hard endosperm maize. Three flint and three dent inbreds, F1 of their diallel crosses, F2s and backcrosses to each parent were evaluated for grain yield and quality traits (flotation test, flour-milling test, grain damage (GD) index and grain density). Genotypes and genotype×environment interactions were significant for most traits. A genetic model including additive, dominance and epistatic effects explained most of the genetic variation for the traits. Additive effect mean squares were larger than those due to dominance effects, except for grain yield and GD. Partition of the dominance variance into average, general, and specific dominance components revealed that the average dominance related to heterosis was the most important. Additive×additive epistatic variation was smaller than additive and dominance variation for quality traits. Some inbreds displayed sufficient potential to be used in hard endosperm maize breeding programmes. The average dominance effect was favourable for most of the quality and agronomic traits. Breeding programmes for improving quality in hard endosperm maize would be most efficient if both additive and dominant effects are capitalized on.

Type
Crops and Soils
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Audilakshmi, S. & Aruna, C. (2005). Genetic analysis of physical grain quality characters in sorghum. Journal of Agricultural Science, Cambridge 143, 267273.CrossRefGoogle Scholar
Badu-Apraku, B., Fakorede, M. A. B., Menkir, A., Kamara, A. Y. & Adam, A. (2004). Effects of drought screening methodology on genetic variances and covariances in Pool 16 DT maize population. Journal of Agricultural Science, Cambridge 142, 445452.CrossRefGoogle Scholar
Chandrashekar, A. & Mazhar, H. (1999). The biochemical basis and implications of grain strength in sorghum and maize. Journal of Cereal Science 30, 193207.CrossRefGoogle Scholar
Darrah, L. L. & Hallauer, A. R. (1972). Genetic effects estimated from generation means in four diallel sets of maize inbreds. Crop Science 12, 615621.CrossRefGoogle Scholar
Dorsey-Redding, C., Hurburgh, C. R. Jr., Johnson, L. A. & Fox, S. R. (1991). Relationships among maize quality factors. Cereal Chemistry 68, 602605.Google Scholar
Eberhart, S. A. (1964). Least squares method for comparing progress among recurrent selection methods. Crop Science 4, 230231.CrossRefGoogle Scholar
Eberhart, S. A. & Gardner, C. O. (1966). A general model for genetic effects. Biometrics 22, 864881.CrossRefGoogle Scholar
EUROSTAT (2005). Agricultural statistics, Quarterly bulletin No. 5. Farm structure survey. http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-NT-05-S01/EN/KS-NT-05-S01-EN.PDF (verified 11 June 2008).Google Scholar
FAO (1992). Maize in Human Nutrition. Food and Nutrition Series No. 25. Rome: FAO.Google Scholar
Fast, R. B. (1990). Manufacturing technology of ready-to-eat cereals. In Breakfast Cereals and How they are Made (Eds Fast, R. B. & Caldwell, E. F.), pp. 1542. St Paul, MN, USA: AACC Inc.Google Scholar
Hallauer, A. R. & Miranda Filho, J. B. (1988). Quantitative Genetics in Maize Breeding, 2nd edn. Ames, IA, USA: Iowa State University Press.Google Scholar
Henry, R. J. & Kettlewell, P. S. (1996). Cereal Grain Quality. London: Chapman & Hall.CrossRefGoogle Scholar
Hinze, L. L. & Lamkey, K. R. (2003). Absence of epistasis for grain yield in elite maize hybrids. Crop Science 43, 4656.CrossRefGoogle Scholar
Krieger, K. M., Pollak, L. M., Brumm, T. J. & White, P. J. (1998). Effects of pollination method and growing location on starch thermal properties of corn hybrids. Cereal Chemistry 75, 656659.CrossRefGoogle Scholar
Lamkey, K. R. & Edwards, J. W. (1999). The quantitative genetics of heterosis. In Proceedings of the International Symposium on The Genetics and Exploitation of Heterosis in Crops (Eds Coors, J. G. & Pandey, S.), pp. 3148. Madison, WI, USA: ASA, CSSA and SSSA.Google Scholar
Matz, S. A. (1991) The Chemistry and Technology of Cereals as Food and Feed, 2nd edn. New York: Van Nostrand Reinhold.Google Scholar
Medici, L. O., Pereira, M. B., Lea, P. J. & Azevedo, R. A. (2004). Diallel analysis of maize lines with contrasting responses to applied nitrogen. Journal of Agricultural Science, Cambridge 142, 535541.CrossRefGoogle Scholar
Monneveux, P., Sanchez, C. & Tiessen, A. (2008). Future progress in drought tolerance in maize needs new secondary traits and cross combinations. Journal of Agricultural Science, Cambridge 146, 287300.CrossRefGoogle Scholar
Moreno-González, J. & Dudley, J. W. (1981). Epistasis in related and unrelated maize hybrids determined by three methods. Crop Science 21, 644651.CrossRefGoogle Scholar
Moreno-González, J., Ramos-Gourcy, F. & Losada, E. (1997). Breeding potential of European flint and earliness-selected U.S. corn belt dent maize populations. Crop Science 37, 14751481.CrossRefGoogle Scholar
Ordás, A. (1991). Heterosis in crosses between American and Spanish populations of maize. Crop Science 31, 931935.CrossRefGoogle Scholar
Robutti, J., Borrás, F., Ferrer, M., Percibaldi, M. & Knutson, C. A. (2000). Evaluation of quality factors in Argentine maize races. Cereal Chemistry 77, 2426.CrossRefGoogle Scholar
SAS Institute Inc. (1999). SAS Stat User's Guide, version 8. Cary, NC, USA: SAS Institute. Inc.Google Scholar
Singh, S. K., Johnson, L. A., Pollak, L. M. & Hurburgh, C. R. (2001 a). Compositional, physical, and wet-milling properties of accessions used in Germplasm Enhancement of Maize project. Cereal Chemistry 78, 330335.CrossRefGoogle Scholar
Singh, S. K., Johnson, L. A., Pollak, L. M. & Hurburgh, C. R. (2001 b). Heterosis in compositional, physical, and wet-milling properties of adapted×exotic corn crosses. Cereal Chemistry 78, 336341CrossRefGoogle Scholar
Soengas, P., Ordás, B., Malvar, R. A., Revilla, P. & Ordás, A. (2003). Heterotic patterns among flint maize populations. Crop Science 43, 844849.CrossRefGoogle Scholar
Stuber, C. W. & Moll, R. H. (1974). Epistasis in maize (Zea mays, L.): IV. Crosses among lines selected for superior inter-variety single cross performances. Crop Science 14, 314317.CrossRefGoogle Scholar
Watson, S. A. & Ramstad, P. E. (1987). Corn: Chemistry and Technology. St. Paul, MN, USA: American Association of Cereal Chemists.Google Scholar
Wolf, D. P. & Hallauer, A. H. (1997). Triple testcross analysis to detect epistasis in maize. Crop Science 37, 763770.CrossRefGoogle Scholar
Xu, Z. C. & Zhu, J. (1999). An approach for predicting heterosis based on an additive, dominance and additive×additive model with environment interaction. Heredity 82, 510517.CrossRefGoogle Scholar