Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T20:38:19.444Z Has data issue: false hasContentIssue false

Evaluating carbon fluxes in orange orchards in relation to planting density

Published online by Cambridge University Press:  02 June 2009

G. LIGUORI*
Affiliation:
Dipartimento di Colture Arboree, viale delle Scienze, 90128 Palermo, Italy
G. GUGLIUZZA
Affiliation:
Consiglio per la Ricerca e la Sperimentazione in Agricoltura, S.S. 113, km 245.5, 90111 Bagheria, Italy
P. INGLESE
Affiliation:
Dipartimento di Colture Arboree, viale delle Scienze, 90128 Palermo, Italy
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Orange (Citrus sinensis L.) is one of the main fruit crops worldwide and its evergreen orchards may have a great potential for carbon (C) sequestration, but no data are currently available. In order to understand carbon fluxes in orange orchards, an experiment was undertaken on traditional and intensive planting systems.

The experiment used C. sinensis scions grafted onto Citrus aurantium (bitter orange) rootstock. One orchard contained 14-year-old trees of the cv. Tarocco Scirè (a blood orange) grown in a traditional system with 494 trees/ha. The second orchard contained 12-year-old trees of the cv. Newhall (a seedless navel orange) grown in an intensive system with 1000 trees/ha. Net primary productivity (NPP) was obtained by measuring the annual canopy growth of single orange trees and the above ground dry biomass of the ground cover; soil respiration seasonal pattern was measured with an infrared gas analyser (EGM-4, PP System) from June 2005 to May 2006, every 2 weeks from 12·00 noon to 15·00 h for maximum respiration and from 02·00 to 05·00 h for minimum respiration; a 24 h cycle measurement of soil respiration was made every 3 months.

Carbon fixation in the fruits and in the canopy of single trees was almost twice as much (10·7 kg C/tree) in the traditional than in the intensive system (5·5 kg C/tree); however, total NPP of the orchard did not change with planting density, being 5·3 t C/ha/year in the traditional system and 5·5 t C/ha/year in the intensive one. Carbon fixation by the ground cover was higher in the traditional (1·1 t C/ha/year) than in the intensive system (0·5 t C/ha/year). Annual soil respiration was 5·9 t C/ha/year in the traditional system and 4·2 t C/ha/year in the intensive one. The carbon balance was almost four times higher in the intensive system (1·8 t C/ha/year) than in the traditional one (0·5 t C/ha/year), due to large differences in soil respiration.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Caruso, T., Inglese, P., Sidari, M. & Sottile, F. (1997). Rootstock influences seasonal dry matter and carbohydrate content and partitioning in above-ground components of ‘Flordaprince’ peach trees. Journal of the American Society for Horticultural Science 122, 673679.CrossRefGoogle Scholar
Caruso, T., Inglese, P., Marra, F. P. & Sottile, F. (1999). Effect of planting system on productivity, dry matter partitioning and carbohydrate content in above-ground components of ‘Flordaprince’ peach trees. Journal of the American Society for Horticultural Science 124, 3945.CrossRefGoogle Scholar
Chalmers, D. J. & Van den Ende, B. (1975). Productivity of peach trees: factors affecting dry-weight distribution during tree growth. Annals of Botany 39, 423432.CrossRefGoogle Scholar
Consoli, S., D'Urso, G. & Toscano, A. (2006). Remote sensing to estimate ET-fluxes and the performance of an irrigation district in southern Italy. Agricultural Water Management 81, 295314.CrossRefGoogle Scholar
Curiel Yuste, J., Baldocchi, D. D., Gershenson, A., Goldtein, A., Misson, L. & Wong, S. (2007). Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biology 13, 20182035.CrossRefGoogle Scholar
Daie, J. (1985). Carbohydrate partitioning and metabolism in crops. Horticultural Reviews 7, 69101.Google Scholar
Davies, F. S. & Albrigo, L. G. (1994). Citrus. Wallingford, UK: CABI Publishing.Google Scholar
Facini, O., Georgiadis, T., Nardino, M., Rossi, F., Maracchi, G. & Motisi, A. (2007). Il contributo degli impianti da frutto all'assorbimento della CO2 atmosferica. In Clima e Cambiamenti Climatici: le attività del CNR (Eds Carli, B., Cavarretta, G., Colacino, M. & Fuzzi, S.), pp. 665668. Rome: Consiglio Nazionale delle Ricerche.Google Scholar
FAO (2007). FOASTAT. Available online at http://faostat.fao.org (verified 5 May 2009).Google Scholar
Faust, M. (1989). Physiology of Temperate Zone Fruit Trees. New York: John Wiley & Sons Inc.Google Scholar
Forshey, C. G. & McKee, M. W. (1970). Production efficiency of a large and small ‘McIntosh’ apple tree. HortScience 5, 164165.CrossRefGoogle Scholar
Glenn, D. M. & Scorza, R. (1992). Reciprocal grafts of standard and dwarf peach alter dry matter partitioning and root physiology. HortScience 27, 241243.CrossRefGoogle Scholar
Harmon, M. E., Nadelhoffer, K. J. & Blair, J. M. (1999). Measuring decomposition, nutrient turnover, and stores in plant litter. In Standard Soil Methods for Long-term Ecological Research (Eds Robertson, G. P., Bledsoe, C. S., Coleman, D. C. & Sollins, P.), pp. 202240. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Inglese, P., Gullo, G., Germanà, M. A. & Policarpo, M. (1994). Osservazioni su impianti ad alta densità di cultivar di arancio e clementine su Flying Dragon (Poncirus trifoliata var. monstruosa). In Atti II Giornate Scientifiche S. O. I. San Benedetto del Tronto Italy, 22/24 giugno (Ed. Rosati, P.), pp. 197198. Firenze, Italy: Società Orticola Italiana.Google Scholar
Inglese, P., Caruso, T., Gugliuzza, G. & Pace, L. S. (2002). Crop load and rootstock influence on dry matter partitioning of early and late ripening peach cultivars. Journal of the American Society for Horticultural Science 127, 825830.CrossRefGoogle Scholar
ISTAT (2005). Annuario di Statistica Agraria. Rome: ISTAT.Google Scholar
Li, H. J., Yan, J. X., Yue, X. F. & Wang, M. B. (2008). Significance of soil temperature and moisture for soil respiration in a Chinese mountain area. Agricultural and Forest Meteorology 148, 490503.CrossRefGoogle Scholar
Maggs, D. H. (1963). The reduction in growth of apple trees brought about by fruiting. Journal of Horticultural Science 38, 119128.CrossRefGoogle Scholar
Montanaro, G., Dichio, B., Tuzio, A. C., Celano, G. & Xiloyannis, C. (2008). Il ruolo dei sistemi frutticoli polifunzionali: parametri fisiologici, gestione delle risorse e stoccaggio del carbonio atmosferico. Rivista di Frutticoltura e di Ortofloricoltura 2, 1418.Google Scholar
Moyano, F. E., Kutsch, W. L. & Rebmann, C. (2008). Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands. Agricultural and Forest Meteorology 148, 135143.CrossRefGoogle Scholar
Pace, L. S., De Jong, T. M. & Inglese, P. (2000). Dinamica di accrescimento degli apparati radicali in piante di pesco cv Elegant Lady (Prunus persica Batsch) in relazione alla carica dei frutti. In Proceedings of the 5th Scientific Meeting of the Italian Horticultural Society, Sirmione, Brescia, Italy, 28–30 March 2000. Vol. 2. (Eds Failla, O. & Piagnani, C.), pp. 325326. Firenze, Italy: Società Orticola Italiana.Google Scholar
Palmer, J. W. (1988). Annual dry matter production and partitioning over the first 5 years of a bed system of Crispin-M27 apple trees at four spacings. Journal of Applied Ecology 25, 569578.CrossRefGoogle Scholar
Pitacco, A., Panzacchi, P., Liguori, G., Inglese, P. & Tagliavini, M. (2007). Ripartizione dei flussi di carbonio in agrumeto: metodi micrometeorologici e diretti a confronto. Italus Hortus 14, 109110.Google Scholar
Reforgiato Recupero, G., Caruso, A., Russo, G. E. & Bertolami, A. (1992). The Flying Dragon trifoliate orange and BA-300 Citrange: effects on scion performance. In Proceedings of the 7th International Citrus Congress, International Society of Citriculture, Acireale, Italy, 8–13 March 1992. Vol. 1. (Eds Tribulato, E., Gentile, A. & Reforgiato Recupero, G.), pp. 286290. Acireale, Italy: International Society of Citriculture.Google Scholar
Robinson, T. L. & Lakso, A. N. (1991). Bases of yield and production efficiency in apple orchard systems. Journal of the American Society for Horticultural Science 116, 188194.CrossRefGoogle Scholar
Roose, M. L. (1986). The potential for dwarfing rootstocks for citrus. Citograph 71, 225229.Google Scholar
SYSTAT (1990). Statistical Software (v. 12·0). Evanston, IL, USA: Systat, Inc.Google Scholar
Tagliavini, M., Panzacchi, P., Ceccon, C., Liguori, G., Bertolla, C., Meggio, F., Tonon, G., Corelli Grappadelli, L., Celano, G., Gucci, R., Pitacco, A. & Inglese, P. (2008). Fluxes of carbon in Italian orchards. First Symposium on Horticulture in Europe, Book of abstract, Vienna, p. 90.Google Scholar
Valentini, R., Matteucci, G., Dolman, A. J., Schulze, E. D., Rebmann, C., Moors, E. J., Granier, A., Gross, P., Jensen, N. O., Pilegaard, K., Lindroth, A., Grelle, A., Bernhofer, C., Grünwald, T., Aubinet, M., Ceulemans, R., Kowalski, A. S., Vesala, T., Rannik, Ü., Berbigier, P., Loustau, D., Guomundsson, J., Thorgeirsson, H., Ibrom, A., Morgenstern, K., Clement, R., Moncrieff, J., Montagnani, L., Minerbi, S. & Jarvis, P. G. (2000). Respiration as the main determinant of carbon balance in European forests. Nature 404, 861865.CrossRefGoogle ScholarPubMed
Watson, R. T., Noble, I. R., Bolin, B., Ravindranath, N. H., Verardo, D. & Dokken, D. (2000). Land Use, Land Use Changes and Forestry. Cambridge, UK: Cambridge University Press.Google Scholar