Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T15:36:51.528Z Has data issue: false hasContentIssue false

Ensemble-based analysis of regional climate change effects on the cabbage stem weevil (Ceutorhynchus pallidactylus (Mrsh.)) in winter oilseed rape (Brassica napus L.)

Published online by Cambridge University Press:  15 June 2011

J. JUNK*
Affiliation:
Centre de Recherche Public – Gabriel Lippmann, Département Environnement et Agro-Biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux, Luxembourg
M. EICKERMANN
Affiliation:
Centre de Recherche Public – Gabriel Lippmann, Département Environnement et Agro-Biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux, Luxembourg
K. GÖRGEN
Affiliation:
Centre de Recherche Public – Gabriel Lippmann, Département Environnement et Agro-Biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux, Luxembourg
M. BEYER
Affiliation:
Centre de Recherche Public – Gabriel Lippmann, Département Environnement et Agro-Biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux, Luxembourg
L. HOFFMANN
Affiliation:
Centre de Recherche Public – Gabriel Lippmann, Département Environnement et Agro-Biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux, Luxembourg
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The impact of projected regional climate change on the migration of cabbage stem weevil (Ceutorhynchus pallidactylus) to oilseed rape crops in the Grand Duchy of Luxembourg is evaluated for past and future time spans. Several threshold-based statistical models for the emergence and the main migration of C. pallidactylus were chosen from the literature and combined with selected regional climate change projections of the EU ENSEMBLES project. Additionally, a simple degree-day based model was used to assess the plant development under expected climate change conditions. An earlier onset as well as a prolongation of the possible emergence times and the main migration periods was detected. The onset of stem elongation of oilseed rape was predicted to occur 3·0 days earlier per decade, while emergence of C. pallidactylus was expected to occur between 3·0 and 3·3 days earlier per decade. The main migration period of the weevil to the field may start 2·0 days earlier per decade under future climate conditions. Additionally, the time span of possible migration is prolonged for about 30 days under projected future climate conditions.

Type
Climate Change and Agriculture
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alford, D. V., Nilsson, C. & Ulber, B. (2003). Insect pests of oilseed rape crops. In Biocontrol of Oilseed Rape Pests (Ed. Alford, D. V.), pp. 941. Oxford, UK: Blackwell Science.CrossRefGoogle Scholar
Alpmann, L. (2009). Der Einfluss des Wetters auf die Entwicklung von Winterraps. Deutsche Saatveredelung, Lippstadt, Innovation 1, 1417.Google Scholar
Andrew, M., Tommey, M. & Evans, E. J. (1991). Temperature and day length control of flowering initiation in winter oilseed rape (Brassica napus L.). Annals of Applied Biology 118, 201208.Google Scholar
Araújo, M. B. & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology and Evolution 22, 4247.CrossRefGoogle ScholarPubMed
Bale, J. S. & Hayward, S. A. L. (2010). Insect overwintering in a changing climate. Journal of Experimental Biology 213, 980994.CrossRefGoogle Scholar
Barnes, A. P., Wreford, A., Butterworth, M. H., Semenov, M. A., Moran, D., Evans, N. & Fitt, B. D. L. (2010). Adaptation to increasing severity of phoma stem canker on winter oilseed rape in the UK under climate change. Journal of Agricultural Science, Cambridge 148, 683694.CrossRefGoogle Scholar
Berry, P. M. & Spink, J. H. (2006). A physiological analysis of oilseed rape yields: past and future. Journal of Agricultural Science, Cambridge 144, 381392.CrossRefGoogle Scholar
Braunert, C. (2009). Verzeichnis der Rüsselkäfer Luxemburgs (Coleoptera, Curculionoidea) mit Ausnahme der Borkenkäfer (Scolytinae) und Kernkäfer (Platypodinae). Bulletin de la Société des Naturalistes Luxembourgeois 110, 125142.Google Scholar
Broschewitz, B. (1985). Untersuchungen zur Biologie und Schadwirkung des Gefleckten Kohltriebrüsslers (Ceutorhynchus quadridens Panzer) am Winterraps (Brassica napus L. var. oleifera Metzg.). PhD thesis, Universität Rostock.Google Scholar
Bryant, S. R. & Shreeve, T. G. (2002). The use of artificial neural networks in ecological analysis: estimating microhabitat temperature. Ecological Entomology 27, 424432.CrossRefGoogle Scholar
Büchi, R. (1996). Eiablage des Rapsstengelrüßlers Ceutorhynchus napi Gyll. in Abhängigkeit der Stengellänge bei verschiedenen Rapssorten. Anzeiger für Schädlingskunde (Journal of Pest Science) 69, 136139.Google Scholar
Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. (2010). Uncertainty in ensemble forecasting of species distribution. Global Change Biology 16, 11451157.CrossRefGoogle Scholar
Chmielewski, F.-M., Müller, A. & Bruns, E. (2004). Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agricultural and Forest Meteorology 121, 6978.CrossRefGoogle Scholar
Collier, R. H., Finch, S., Phelps, K. & Thompson, A. R. (1991). Possible impact of global warming on cabbage root fly (Delia radicum) activity in the UK. Annals of Applied Biology 118, 261271.CrossRefGoogle Scholar
Debouzie, D. & Wimmer, F. (1992). Models for winter rape crop invasion by the stem weevil Ceuthorrhynchus napi Gyll. (Coleoptera: Curculionidae). Journal of Applied Entomology 114, 298304.CrossRefGoogle Scholar
Drogue, G., Mestre, O., Hoffmann, L., Iffly, J.-F. & Pfister, L. (2005). Recent warming in a small region with semi-oceanic climate, 1949–1998: what is the ground truth? Theoretical and Applied Climatology 81, 110.CrossRefGoogle Scholar
Eitzinger, J., Orlandini, S., Stefanski, R. & Naylor, R. E. L. (2010). Climate change and agriculture: introductory editorial. Journal of Agricultural Science, Cambridge 148, 499500.CrossRefGoogle Scholar
Estay, S. A., Lima, M. & Labra, F. A. (2009). Predicting insect pest status under climate change scenarios: combining experimental data and population dynamics modelling. Journal of Applied Entomology 133, 491499.CrossRefGoogle Scholar
Estrella, N., Sparks, T. H. & Menzel, A. (2007). Trends and temperature response in the phenology of crops in Germany. Global Change Biology 13, 17371747.CrossRefGoogle Scholar
Fröhlich, G. (1956). Methoden zur Bestimmung der Befalls- bzw. Bekämpfungstermine verschiedener Rapsschädlinge, insbesondere des Rapsstengelrüßlers (Ceuthorhynchus napi Gyll). Nachrichtenblatt für den Deutschen Pflanzenschutzdienst 10, 4853.Google Scholar
Görgen, K., Beersma, J., Buiteveld, H., Brahmer, G., Carambia, M., de Keizer, O., de Krahe, P., Nilson, E., Lammersen, R., Perrin, C. & Volken, D. (2010). Assessment of Climate Change Impacts on Discharge in the River Rhine Basin. Results of the RheinBlick2050 Project. Lelystad, The Netherlands: International Commission for the Hydrology of the Rhine Basin (CHR).Google Scholar
Günthart, E. (1949). Beiträge zur Lebensweise und Bekämpfung von Ceutorhynchus quadridens Panz. und Ceutorhynchus napi Gyll. mit vielen Beobachtungen an weiteren Kohl- und Rapsschädlingen. Mitteilungen der Schweizerischen Entomologischen Gesellschaft 23, 441591.Google Scholar
Hodek, I. (1996). Diapause development, diapause termination and the end of diapause. European Journal of Entomology 93, 475487.Google Scholar
Intergovernmental Panel on Climate Change (IPCC) (2007). Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L.). Cambridge, UK: Cambridge University Press.Google Scholar
Johnen, A., Williams, I. H., Nielsson, C., Klukowski, Z., Luik, A. & Ulber, B. (2010). The proPlant decision support system: Phenological models for the major pests of oilseed rape and their key parasitoids in Europe. In Biocontrol-Based Integrated Management of Oilseed Rape Pests (Ed. Williams, I. H.), pp. 381403. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
Junk, J., Feister, U. & Helbig, A. (2007). Reconstruction of daily solar UV irradiation from 1893 to 2002 in Potsdam, Germany. International Journal of Biometeorology 51, 505512.CrossRefGoogle ScholarPubMed
Kjaer, C. (1992). Dispersive flight of the cabbage stem weevil. In Proceedings of the 8th International Symposium on Insect Plant Relationships, International Agricultural Centre, Wageningen, The Netherlands, 9–13 March 1992 (Eds Menken, S. B. J., Visser, J. H. & Harrewijn, P.), pp. 109111. Series: Entomologica 49. Wageningen, The Netherlands: Kluwer Academic Publishers.Google Scholar
Kocmánková, E., Trnka, M., Eitzinger, J., Dubrovský, M., Štěpánek, P., Semerádová, D., Balek, J., Skalák, P., Farda, A., Juroch, J. & Žalud, Z. (2011). Estimating the impact of climate change on the occurrence of selected pests at a high spatial resolution: a novel approach. Journal of Agricultural Science, Cambridge 149, 185195.CrossRefGoogle Scholar
Lancashire, P. D., Bleiholder, H., Van den Boom, T., Langelüddeke, P., Stauss, R., Weber, E. & Witzenberger, A. (1991). A uniform decimal code for growth stages of crops and weeds. Annals of Applied Biology 119, 561601.CrossRefGoogle Scholar
Lehmann, W. (1965). Einfluss chemischer Bekämpfungsmaßnahmen auf einige Rapsschädlinge und ihre Parasiten. II. Knospen- und Stengelschädlinge. Archiv für Pflanzenschutz 1, 209219.CrossRefGoogle Scholar
Marletto, V., Ventura, F., Fontana, G. & Tomei, F. (2007). Wheat growth simulation and yield prediction with seasonal forecasts and a numerical model. Agricultural and Forest Meteorology 147, 7179.CrossRefGoogle Scholar
May, W. (2008). Potential future changes in the characteristics of daily precipitation in Europe simulated by the HIRHAM regional climate model. Climate Dynamics 30, 581603.CrossRefGoogle Scholar
Musolin, D. L. (2007). Insects in a warmer world: ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Global Change Biology 13, 15651585.CrossRefGoogle Scholar
Netherer, S. & Schopf, A. (2010). Potential effects of climate change on insect herbivores in European forests – general aspects and the pine processionary moth as specific example. Forest Ecology and Management 259, 831838.CrossRefGoogle Scholar
Nilson, E., Beersma, J., Perrin, C., Carambia, M., Krahe, P., de Keizer, O. & Görgen, K. (2010 a). Overview of available data and processing procedures. In Assessment of Climate Change Impacts on Discharge in the Rhine River Basin: Results of the RheinBlick2050 Project (Eds Görgen, K., Beersma, J., Brahmer, G., Buiteveld, H., Carambia, M., de Keizer, O., Krahe, P., Nilson, E., Lammersen, R., Perrin, C. & Volken, D.), pp. 1950. Lelystad, The Netherlands: International Commission for the Hydrology of the Rhine Basin (CHR).Google Scholar
Nilson, E., Perrin, C., Beersma, J., Krahe, P., Carambia, M., de Keizer, O. & Görgen, K. (2010 b). Evaluation of data and processing procedures. In Assessment of Climate Change Impacts on Discharge in the Rhine River Basin: Results of the RheinBlick2050 Project (Eds Görgen, K., Beersma, J., Brahmer, G., Buiteveld, H., Carambia, M., de Keizer, O., Krahe, P., Nilson, E., Lammersen, R., Perrin, C. & Volken, D.), pp. 5198. Lelystad, The Netherlands: International Commission for the Hydrology of the Rhine Basin (CHR).Google Scholar
Nolte, H.-W. (1957). Flug und Eiablage von Ceuthorhynchus quadridens Panz. in Abhängigkeit von der Witterung (Col. Curculionidae). In Bericht über die Hundertjahrfeier der Deutschen Entomologischen Gesellschaft (Ed. Hannemann, H.), pp. 135140. Berlin, Germany: Akademia Verlag.CrossRefGoogle Scholar
Oerke, E.-C. (2006). Crop losses to pests. The Journal of Agricultural Science, Cambridge 144, 3143.CrossRefGoogle Scholar
Olfert, O. & Weiss, R. M. (2006). Impact of climate change on potential distributions and relative abundances of Oulema melanopus, Meligethes viridescens and Ceutorhynchus obstrictus in Canada. Agriculture Ecosystems and Environment 113, 295301.CrossRefGoogle Scholar
Parmesan, C. (2007). Influence of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology 13, 18601872.CrossRefGoogle Scholar
Pfister, L., Drogue, G., El Idrissi, A., Iffly, J.-F., Poirier, C. & Hoffmann, L. (2004). Spatial variability of trends in the rainfall-runoff relationship: A mesoscale study in the Mosel basin. Climatic Change 66, 6787.CrossRefGoogle Scholar
Piani, C., Haerter, J. O. & Coppola, E. (2010). Statistical bias correction for daily precipitation in regional climate models over Europe. Theoretical and Applied Climatology 99, 187192.CrossRefGoogle Scholar
Ramirez-Beltran, N. D., Castro, J. M., Harmsen, E. & Vasquez, R. (2008). Stochastic transfer function model and neural networks to estimate soil moisture. Journal of the American Water Resources Association 44, 847865.CrossRefGoogle Scholar
Reid, H. (2006). Climate change and biodiversity in Europe. Conservation and Society 4, 84101.Google Scholar
Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C. & Pounds, J. A. (2003). Fingerprints of global warming on wild animals and plants. Nature 421, 5760.CrossRefGoogle ScholarPubMed
Roura-Pascual, N., Brotons, L., Peterson, A. T. & Thuiller, W. (2009). Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian Peninsula. Biological Invasions 11, 10171031.CrossRefGoogle Scholar
Roy, D. B. & Sparks, T. H. (2000). Phenology of British butterflies and climate change. Global Change Biology 6, 407416.CrossRefGoogle Scholar
Seidenglanz, M., Poslušná, J. & Hrudová, E. (2009). The importance of monitoring the Ceutorhynchus pallidactylus female flight activity for the timing of insecticidal treatment. Plant Protection Science 45, 103112.CrossRefGoogle Scholar
Skrocki, C. (1972). Ekologia wasniejszych gatunkow chowaczy wystepujacych na rzepaku ozimym w wojewodztwie Szezecinskim. Roczniki Nauk Rolniczych Seria E 2, 7593.Google Scholar
Thomson, L. J., Macfadyen, S. & Hoffmann, A. A. (2010). Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control 52, 296306.CrossRefGoogle Scholar
Van Asch, M., van Tienderen, P. H., Holleman, L. J. M. & Visser, M. E. (2007). Predicting adaptation of phenology in response to climate change, an insect herbivore example. Global Change Biology 13, 15961604.CrossRefGoogle Scholar
Van der Linden, P. & Mitchell, J. F. B. (2009). ENSEMBLES: Climate Change and its Impacts: Summary of Research and Results from the ENSEMBLES Project. Exeter, UK: Met Office Hadley Centre.Google Scholar
Ward, N. L. & Masters, G. J. (2007). Linking climate change and species invasion: an illustration using insect herbivores. Global Change Biology 13, 16051615.CrossRefGoogle Scholar
Williams, I. H. (2004). Advances in insect pest management of oilseed rape in Europe. In Insect Pest Management (Eds Horwitz, A. R. & Ishaaya, I.), pp. 181208. Berlin, Germany: Springer.CrossRefGoogle Scholar
Williams, I. H. (2010). The major insect pests of oilseed rape in Europe and their management: an overview. In Biocontrol-Based Integrated Management of Oilseed Rape Pests (Ed. Williams, I. H.), pp. 143. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
Yuan, J. S., Himanen, S. J., Holopainen, J. K., Chen, F. & Stewart, C. N. Jr (2009). Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends in Ecology and Evolution 24, 323331.CrossRefGoogle ScholarPubMed