Article contents
Efficiency of marker-assisted selection for ascochyta blight in chickpea
Published online by Cambridge University Press: 16 December 2013
Summary
The extent to which markers have been used in chickpea breeding programmes has not been clearly determined. In the current study, phenotypic and marker-assisted selection (MAS) were employed to select blight resistant genotypes, comparing the effectiveness of both methods. The phenotypic evaluation showed that the resistance could be recessive in the material employed. However, the high distorted segregation towards the susceptible parent detected on linkage group four (LG4) could also explain the phenotype distribution of resistance. Phenotypic selection in F2:4 and F2:5 generations lead to an increase in the frequency of the allele associated with the resistance of the markers CaETR and GAA47, indicating the usefulness of these markers for MAS. The markers TA72 and SCY17 could be also useful for MAS but the high distorted segregation towards the susceptible parent in the region where these markers are located could explain their low effectiveness. The costs associated with phenotypic selection and MAS for ascochyta blight resistance during three cycles of selection are presented in the current study, showing that MAS was more expensive than phenotypic selection. Nevertheless, the use of markers reduced the time taken to select resistant lines. The markers analysed in the current study were useful to select genotypes resistant to ascochyta blight in chickpea breeding programmes, allowing pyramiding genes or quantitative trait loci (QTL) related to different pathotypes. It is recommended that MAS should be employed in early generations of chickpea breeding programmes for the four QTL analysed because this makes it possible to develop populations with a high frequency of the favourable alleles conferring resistance to blight.
- Type
- Crops and Soils Research Papers
- Information
- Copyright
- Copyright © Cambridge University Press 2013
References
REFERENCES
- 25
- Cited by