Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T06:35:01.774Z Has data issue: false hasContentIssue false

Efficiencies of nitrogen fertilizers for winter cereal production, with implications for greenhouse gas intensities of grain

Published online by Cambridge University Press:  01 November 2012

R. SYLVESTER-BRADLEY*
Affiliation:
ADAS Boxworth, Cambridge CB23 4NN, UK
D. R. KINDRED
Affiliation:
ADAS Boxworth, Cambridge CB23 4NN, UK
S. C. WYNN
Affiliation:
ADAS Boxworth, Cambridge CB23 4NN, UK
R. E. THORMAN
Affiliation:
ADAS Boxworth, Cambridge CB23 4NN, UK
K. E. SMITH
Affiliation:
ADAS Boxworth, Cambridge CB23 4NN, UK
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Fertilizer nitrogen (N) accounts for the majority of the greenhouse gas (GHG) emissions associated with intensive wheat production, and the form of fertilizer N affects these emissions. Differences in manufacturing emissions (as represented in the current carbon accounting methodologies) tend to favour urea, even when using the best available manufacturing technologies (BAT), whereas differences in fertilizer N efficiency and emissions of ammonia tend to favour ammonium nitrate (AN). To resolve these differences, data from 47 experiments in two large UK studies conducted from 1982 to 1987 and from 2003 to 2005 were reanalysed, showing that on average urea efficiency was 0·9 of AN (although mean ammonia emissions in 10 subsidiary experiments indicated an efficiency difference of 0·2); treating urea with a urease inhibitor (TU; AGROTAIN®, active ingredient N-(n-butyl) thiophosphoric triamide (n-BTPT)) brought its efficiency almost in line with AN; however, a significantly greater mean optimum N amount for TU (+0·1 of AN) was not fully explained. A standard response function relating wheat yield to applied AN was modified for degrees of relative inefficiency, thus enabling yields and GHG intensities (kg CO2e/tonne (t) grain) to be calculated using a PAS2050 compatible model for GHG emissions for any N amount of any N form. With AN manufactured by average European technology (AET), the estimated GHG intensity of wheat producing 8 t/ha was 451 kg/t; whereas with urea or TU made by AET it was 0.87–0.99 or 0.84–0.86 of this respectively. Using BAT for fertilizer manufacture, the grain's GHG intensity with AN and TU was 368 kg/t, but was 1·03–1·17 of this with untreated urea. The range of effects on GHG intensities arose mainly from remaining uncertainties in the inefficiencies of the N forms. Generally, economic margins and GHG intensities were not much affected by adjustments in N use for relative inefficiencies or different prices of urea-based fertilizers compared with AN. Overall, TU appeared to provide the best combination of economic performance and GHG intensity, unless the price for N as TU exceeded that for N as AN.

Type
Climate Change and Agriculture Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ANON (2010). The Fertilizer Manual (RB209), 8th edn.London: HMSO.Google Scholar
Archer, J. (1985). Crop Nutrition and Fertiliser Use. Ipswich, UK: Farming Press Ltd.Google Scholar
Bates, T. E. & Johnston, R. W. (1985). Soil Acidity and Liming. Ontario: University of Guelph/OMAFRA Agriculture and Rural. Available online at http://www.plantstress.com/Articles/toxicity_m/acidity_liming.htm (verified 17 July 2012).Google Scholar
Bauer, B., Bangerth, F. & von Wiren, N. (2009). Influence of nitrogen forms on tillering, cytokinin translocation and yield in cereal crop plants. In Proceedings of the International Plant Nutrition Colloquium XVI, UC Davis, California. Oakland, CA, USA: University of California. Available online at http://escholarship.org/uc/item/49s757g4 (verified 17 July 2012).Google Scholar
Beaton, J. (2011). History of fertilizers. In Efficient Fertilizer Use Manual, pp. 117. Plymouth, MN: The Mosaic Company. Available online at http://www.back-to-basics.net/efficient-fertilizer-use-manual (verified 17 July 2012).Google Scholar
Beddington, J., Asaduzzaman, M., Fernandez, A., Clark, M., Guillou, M., Jahn, M., Erda, L., Mamo, T., Van Bo, N., Nobre, C. A., Scholes, R., Sharma, R. & Wakhungu, J. (2011). Achieving food security in the face of climate change: Summary for policy makers from the Commission on Sustainable Agriculture and Climate Change. In CGIAR Research Program on Climate Change, Agriculture and Food Security. Frederiksberg C, Denmark: CCAFS. Available online at http://ccafs.cgiar.org/sites/default/files/assets/docs/climate_food_commission-final-mar2012.pdf (verified 17 July 2012).Google Scholar
Berry, P. M., Kindred, D. R. & Paveley, N. D. (2008). Quantifying the effects of fungicides and disease resistance on greenhouse gas emissions associated with wheat production. Plant Pathology 57, 10001008.Google Scholar
Berry, P. M., Kindred, D. R., Olesen, J. E., Jorgensen, L. N. & Paveley, N. D. (2010). Quantifying the effect of interactions between disease control, nitrogen supply and land use change on the greenhouse gas emissions associated with wheat production. Plant Pathology 59, 753763.Google Scholar
Black, A. S., Sherlock, R. R., Smith, N. P., Cameron, K. C. & Goh, K. M. (1985). Effects of form of nitrogen, season, and urea application rate on ammonia volatilisation from pastures. New Zealand Journal of Agricultural Research 28, 469474.Google Scholar
Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., van der Hoek, K. W. & Olivier, J. G. J. (1997). A global high-resolution emission inventory for ammonia. Global Biogeochemical Cycles 11, 561587.CrossRefGoogle Scholar
Bouwman, A. F., Boumans, L. J. M. & Batjes, N. H. (2002 a). Modelling global annual N2O and NO emissions from fertilized fields. Global Biogeochemical Cycles 16, 1080.Google Scholar
Bouwman, A. F., Boumans, L. J. M. & Batjes, N. H. (2002 b). Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochemical Cycles 16, 1058.Google Scholar
Bouwman, A. F., Stehfest, A. & van Kessel, C. (2010). Nitrous oxide emissions from the nitrogen cycle in arable agriculture: estimation and mitigation. In Nitrous Oxide and Climate Change (Ed. Smith, K.), pp. 85106. London: Earthscan.Google Scholar
Bremner, J. M. (1990). Problems in the use of urea as a nitrogen fertilizer. Soil Use and Management 6, 7071.Google Scholar
Brentrup, F. & Pallière, C. (2008). GHG emissions and energy efficiency in European nitrogen fertiliser production and use. In Proceedings of the International Fertiliser Society 639. Leek, UK: International Fertiliser Society.Google Scholar
BSi (2011). PAS2050:2011. Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services. London: British Standards Institute.Google Scholar
Carbon Trust (2006). Carbon Footprints in the Supply Chain: The Next Step for Business. CTC616. London: Carbon Trust Publication.Google Scholar
Chadwick, D., Misselbrook, T., Gilhespy, S., Williams, J., Bhogal, A., Sagoo, L., Nicholson, F., Webb, J., Anthony, S. & Chambers, B. (2005). Ammonia Emissions and Crop N Use Efficiency. Report for WP1b of Defra Project NT2605: ‘The Behaviour of Some Different Fertiliser-N Materials – Main Experiments’. London: Defra.Google Scholar
Chambers, B. J. & Dampney, P. M. R. (2009). Nitrogen efficiency and ammonia emissions from urea-based and ammonium nitrate fertilisers. Proceedings of the International Fertiliser Society 657, 120.Google Scholar
Chaney, K. & Paulson, G. A. (1988). Field experiments comparing ammonium nitrate and urea top-dressing for winter cereals and grassland in the UK. Journal of Agricultural Science, Cambridge 110, 285299.Google Scholar
Chien, S. H., Prochnow, L. I. & Cantarella, H. (2009). Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Advances in Agronomy 102, 267322.Google Scholar
Corstanje, R., Kirk, G. J. D. & Lark, R. M. (2008). The behaviour of soil process models of ammonia volatilization at contrasting spatial scales. Journal of Soil Science 59, 12711283.Google Scholar
Crute, I. R. & Muir, J. F. (2011). Improving the productivity and sustainability of terrestrial and aquatic food production systems: future perspectives. Journal of Agricultural Science, Cambridge 149 (Suppl. S1), 17.CrossRefGoogle Scholar
Dampney, P. M. R., Chadwick, D., Smith, K. A. & Bhogal, A. (2004). The behaviour of some different fertiliser-N materials. Final Report of Defra Project NT2603: ‘The Behaviour of Some Different Fertiliser-N Materials – Initial Field Experiments’. London: Defra. Available online at http://randd.defra.gov.uk/Document.aspx?Document=NT2603_4058_FRP.doc (verified 17 July 2012).Google Scholar
Dampney, P. M. R., Dyer, C. J., Goodless, G. & Chambers, B. (2006). Crop responses. Final Report for WP1a of Defra Project NT2605: ‘The Behaviour of Some Different Fertiliser-N Materials – Main Experiments’. Available online at http://randd.defra.gov.uk/Document.aspx?Document=NT2605_4061_FRP.doc (verified 17 July 2012).Google Scholar
Dawar, K., Zaman, M., Rowarth, J. S., Blennerhassett, J. & Turnbull, M. H. (2010 a). The impact of urease inhibitor on the bioavailability of nitrogen in urea and in comparison with other nitrogen sources in ryegrass (Lolium perenne L.). Crop and Pasture Science 61, 214221.Google Scholar
Dawar, K., Zaman, M., Rowarth, J. S., Blennerhassett, J. & Turnbull, M. H. (2010 b). Urea hydrolysis and lateral and vertical movement in the soil: effects of urease inhibitor and irrigation. Biology and Fertility of Soils 47, 139146.Google Scholar
Defra (2006). NT26 Research Programme Executive Summary. London: Defra.Google Scholar
Defra (2011 a). The British Survey of Fertiliser Practice: Fertiliser Use on Farm Crops for Crop Year 2010. London: HMSO. Available online at www.defra.gov.uk/statistics/foodfarm/enviro/fertiliserpractice/ (verified 18 July 2012).Google Scholar
Defra (2011 b). 2011 Guidelines to Defra/DECC's GHG Conversion Factors for Company Reporting: Methodology Paper for Emission Factors. London: HMSO. Available online at http://www.defra.gov.uk/publications/2011/09/01/ghg-conversion-factors-reporting/ (verified 18 July 2012).Google Scholar
DfT (2011). Renewable Transport Fuels Obligation. London: Department for Transport. Available online at http://www.dft.gov.uk/topics/sustainable/biofuels/rtfo/ (verified 18 July 2012).Google Scholar
EFMA (2000). Production of NPK Fertilizers by the Mixed Acid Route. Best Available Techniques for Pollution Prevention and Control in the European Fertilizer Industry, Booklet No. 8. Brussels: European Fertilizer Manufacturer's Association.Google Scholar
Engström, L. (2010). Nitrogen dynamics in crop sequences with winter oilseed rape and winter wheat. Acta Universitatis Agriculturae Sueciae 92, 16526880.Google Scholar
FAO (2001). Global Estimates of Gaseous Emissions of NH3, NO, and N2O from Agricultural Land. Rome: FAO and International Fertilizer Industry Association.Google Scholar
Fenn, L. B. & Kissel, D. E. (1975). Ammonia volatilization from surface applications of ammonium compounds on calcareous soils, IV. Effect of calcium carbonate content. Soil Science Society of America Journal 39, 631633.Google Scholar
Fenn, L. B., Taylor, R. M. & Matocha, J. E. (1981). Ammonia losses from surface-applied nitrogen fertilizer as controlled by soluble calcium and magnesium: General theory. Soil Science Society of America Journal 45, 777781.Google Scholar
Ferguson, R. B., McInnes, K. J., Kissel, D. E. & Kanemasu, E. T. (1988). A comparison of methods of estimating ammonia volatilization in the field. Fertiliser Research 15, 5569.Google Scholar
Génermont, S. & Cellier, P. (1997). A mechanistic model for estimating ammonia volatilization from slurry applied to bare soil. Agricultural and Forest Meteorology 88, 145167.CrossRefGoogle Scholar
George, B. J. (1984). Design and interpretation of nitrogen response experiments. In The Nitrogen Requirement of Cereals. MAFF Reference Book 385, pp. 133149, London: HMSO.Google Scholar
Godfray, H. C. J., Pretty, J., Thomas, S. M., Warham, E. J. & Beddington, J. R. (2011). Linking policy on climate and food. Science 331, 10131014.Google Scholar
Grylls, J. P., Webb, J. & Dyer, C. J. (1997). Seasonal variation in response of winter cereals to nitrogen fertilizer and apparent recovery of fertilizer nitrogen on chalk soils in southern England. Journal of Agricultural Science, Cambridge 128, 251262.Google Scholar
Harrison, R. & Webb, J. (2001). A review of the effect of N fertilizer type on gaseous emissions. Advances in Agronomy 71, 65108.Google Scholar
Hillier, J., Hawes, C., Squire, G., Hilton, A., Wale, S. & Smith, P. (2009). The carbon footprints of food crop production. International Journal of Agricultural Sustainability 7, 107118.Google Scholar
Hillier, J., Brentrup, F., Wattenbach, M., Walter, C., Garcia-Suarez, T., Mila-i-Canals, L. & Smith, P. (2012). Which cropland greenhouse gas mitigation options give the greatest benefits in different world regions? Climate and soil-specific predictions from integrated empirical models. Global Change Biology 18, 18801894.Google Scholar
Hoxha, A., Jenssen, T. K., Pallière, C. & Cryans, M. (2011). European emissions trading scheme phase III and the EU fertiliser industry. In Proceedings of the International Fertiliser Society 690. Leek, UK: International Fertiliser Society.Google Scholar
HSE (1996). Storing and Handling Ammonium Nitrate. INDG230. London: HMSO. Available online at www.hse.gov.uk/pubns/indg230.pdf (verified 18 July 2012).Google Scholar
IPCC (2006). IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme (Eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.). Japan: IGES.Google Scholar
IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L.). Cambridge/New York: Cambridge University Press. pp. 996.Google Scholar
Jaggard, K. W., Qi, A. & Armstrong, M. J. (2009). A meta-analysis of sugarbeet yield responses to nitrogen fertilizer measured in England since 1980. Journal of Agricultural Science, Cambridge 147, 287301.Google Scholar
Jenssen, T. K. & Kongshaug, G. (2003). Energy consumption and greenhouse gas emissions in fertiliser production. In Proceedings of the International Fertiliser Society 509. Leek, UK: International Fertiliser Society.Google Scholar
Juan, Y. H., Chen, L. J., Wu, Z. J. & Wang, R. (2009). Kinetics of soil urease affected by urease inhibitors at contrasting moisture regimes. Journal of Soil Science and Plant Nutrition 9, 125133.Google Scholar
Kindred, D., Mortimer, N., Sylvester-Bradley, R., Brown, G. & Woods, J. (2008 a). Understanding and managing uncertainties to improve Biofuel GHG emissions calculations. Project Report No. 435 Part 2. London: HGCA. Available online at http://www.hgca.com/document.aspx?fn=load&media_id=4566&publicationId=4622 (verified 18 July 2012).Google Scholar
Kindred, D., Berry, P., Burch, O. & Sylvester-Bradley, R. (2008 b). Effects of nitrogen fertiliser use on green house gas emissions and land use change. Aspects of Applied Biology 88, 5356.Google Scholar
King, J. A., Sylvester-Bradley, R. & Rochford, A. D. H. (2001). Availability of nitrogen after fertilizer applications. Journal of Agricultural Science, Cambridge 136, 141157.Google Scholar
Linquist, B., van Groenigen, K. J., Adviento-Borbe, M. A., Pittelkow, C. & van Kessel, C. (2012). An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biology 18, 194209.Google Scholar
Lloyd, A., Webb, J., Archer, J. R. & Sylvester-Bradley, R. (1997). Urea as a nitrogen fertilizer for cereals. Journal of Agricultural Science, Cambridge 128, 263271.Google Scholar
MacDonald, A., Goulding, K., Bhogal, A., Nicholson, F., Chambers, B., Sagoo, L., Dixon, L. & Hatch, D. (2006). Nitrogen losses to surface and ground waters. Final Report for WP4 of Defra Project NT2605: ‘The Behaviour of Some Different Fertiliser-N Materials – Main Experiments’. Available online at http://randd.defra.gov.uk/Document.aspx?Document=NT2605_4064_FRP.doc (verified 18 July 2012).Google Scholar
Maddux, L. D., Kissel, D. E. & Barnes, P. L. (1984). Effects of nitrogen source, placement, and application time on irrigated corn. Journal of Fertilizer Issues 1, 8690.Google Scholar
McInnes, K. J., Ferguson, R. B., Kissel, D. E. & Kanemasu, E. T. (1986). Field measurements of ammonia loss from surface applications of urea solution to bare soil. Agronomy Journal 78, 192196.Google Scholar
Misselbrook, T. H., Sutton, M. A. & Scholefield, D. (2004). A simple process-based model for estimating ammonia emissions from agricultural land after fertiliser applications. Soil Use and Management 20, 365372.Google Scholar
Mosier, A. R., Syers, J. K. & Freney, J. R. (eds.) (2004). Agriculture and the Nitrogen Cycle: Assessing the Impacts of Fertilizer use on Food Production and the Environment. Washington, D.C: Island Press.Google Scholar
NaCTSO (2006). Secure Your Fertiliser. London: NaCTSO. Available online at http://www.secureyourfertiliser.gov.uk (verified 18 July 2012).Google Scholar
Nastri, A., Toderi, G., Bernati, E. & Govi, G. (2000). Ammonia volatilization and yield response from urea applied to wheat with urease (NBPT) and nitrification (DCD) inhibitors. Agrochimica 44, 231239.Google Scholar
Nicolardot, B., Recous, S. & Mary, B. (2001). Simulation of C and N mineralisation during crop residue decomposition: a simple dynamic model based on the C : N ratio of the residues. Plant and Soil 228, 83103.Google Scholar
Paveley, N. D., Lockley, D., Vaughan, T. B., Thomas, J. & Schmidt, K. (2000). Predicting effective fungicide doses through observation of leaf emergence. Plant Pathology 49, 748766.Google Scholar
Piepho, H. P., Denis, J. B. & van Eeuwijk, F. A. (1998). Predicting cultivar differences using covariates. Journal of Agricultural, Biological and Environmental Statistics 3, 151162.Google Scholar
Ping, J., Bremer, E. & Janzen, H. H. (2000). Foliar uptake of volatilized ammonia from surface-applied urea by spring wheat. Communications in Soil Science and Plant Analysis 31, 165172.Google Scholar
San Francisco, S., Urrutia, O., Martin, V., Peristeropoulosa, A. & Garcia-Mina, J. M. (2011). Efficiency of urease and nitrification inhibitors in reducing ammonia volatilization from diverse nitrogen fertilizers applied to different soil types and wheat straw mulching. Journal of the Science of Food and Agriculture 91, 15691575.Google Scholar
Sanz-Cobena, A., Misselbrook, T., Camp, V. & Vallejo, A. (2011). Effect of water addition and the urease inhibitor NBPT on the abatement of ammonia emission from surface applied urea. Atmospheric Environment 45, 15171524.Google Scholar
Sanz-Cobena, A., Sánchez-Martín, L., García-Torres, L. & Vallejo, A. (2012). Gaseous emissions of N2O and NO and NO3− leaching from urea applied with urease and nitrification inhibitors to a maize (Zea mays) crop. Agriculture, Ecosystems and Environment 149, 6473.Google Scholar
Sherlock, R. R., Freney, J. R., Smith, N. P. & Cameron, K. C. (1989). Evaluation of a sampler for assessing ammonia losses from fertilized fields. Fertiliser Research 21, 6166.Google Scholar
Slaton, N. A., Norman, R. J. & Kelley, J. (2011). Winter wheat yield response to a urea amended with a urease inhibitor and fertilization time. Crop Management Online doi:10.1094/CM-2011-0126-01-RS.Google Scholar
Smith, K. A., McTaggart, I. P., Dobbie, K. E. & Conen, F. (1998). Emissions of N2O from Scottish agricultural soils, as a function of fertilizer N. Nutrient Cycling in Agroecosystems 52, 123130.Google Scholar
Smith, K. A., Dobbie, K., Thorman, R. & Yamulki, S. (2006). The effect of N fertiliser forms on nitrous oxide emissions. Final Report for WP2 of Defra Project NT2605: ‘The Behaviour of Some Different Fertiliser-N Materials – Main Experiments’. London: HMSO. Available online at http://randd.defra.gov.uk/Document.aspx?Document=NT2605_4062_FRP.doc (verified 18 July 2012).Google Scholar
Smith, K. A., Dobbie, K. E., Thorman, R. E., Watson, C. J., Chadwick, D. R., Yamulki, S. & Ball, B. C. (2012). The effect of N fertiliser forms on nitrous oxide emissions from UK arable land and grassland. Nutrient cycling in Agroecosystems 93, 127149.Google Scholar
Smith, P. & Olesen, J. E. (2010). Synergies between the mitigation of, and adaptation to, climate change in agriculture. Journal of Agricultural Science, Cambridge 148, 543552.Google Scholar
Snyder, C. S., Bruulsema, T. W., Jensen, T. L. & Fixen, P. E. (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment 133, 247266.Google Scholar
Sutton, M. A., Oenema, O., Erisman, J. W., Leip, A., van Grinsven, H. & Winiwarter, W. (2011). Too much of a good thing. Nature 472, 159161.Google Scholar
Sylvester-Bradley, R. & Kindred, D. R. (2009). Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. Journal of Experimental Botany 60, 19391951.Google Scholar
Sylvester-Bradley, R., Kindred, D. R., Blake, J., Dyer, C. J. & Sinclair, A. H. (2008). Optimising fertiliser nitrogen for modern wheat and barley crops. Project Report No. 438. London: HGCA. Available online at http://www.hgca.com/document.aspx?fn=load&media_id=4672&publicationId=4687 (verified 18 July 2012).Google Scholar
Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W. H., Simberloff, D. & Swackhamer, D. (2001). Forecasting agriculturally driven global environmental change. Science 292, 281284.Google Scholar
Tottman, D. R. (1987). The decimal code for the growth stages of cereals, with illustrations. Annals of Applied Biology 110, 441454.Google Scholar
UNFCCC (1998). Kyoto Protocol to the United Nations Framework Convention on Climate Change. Bonn: UNFCCC Secretariat. Available online at unfccc.int/kyoto_protocol/items/2830.php (verified 18 July 2012).Google Scholar
Watson, C. J. & Akhonzada, N. A. (2005). Optimum Use of nBTPT (Agrotain) Urease Inhibitor. Final report for WP3 of Defra Project NT2605: ‘The Behaviour of Some Different Fertiliser-N Materials – Main Experiments’. London: HMSO. Available online at http://randd.defra.gov.uk/Document.aspx?Document=NT2605_4063_FRP.doc (verified 18 July 2012).Google Scholar
Watson, C. J., Stevens, R. J. & Laughlin, R. J. (1990). Effectiveness of the urease inhibitor NBPT (N-(n-butyl) thiophosphoric triamide) for improving the efficiency of urea for ryegrass production. Fertilizer Research 24, 1115.Google Scholar
Watson, C. J., Miller, H., Poland, P., Kilpatrick, D. J., Allen, M. D. B., Garrett, M. K. & Christianson, C. B. (1994). Soil properties and the ability of the urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) to reduce ammonia volatilization from surface-applied urea. Soil Biology and Biochemistry 26, 11651171.Google Scholar
Watson, C. J., Akhonzada, N. A., Hamilton, J. T. G. & Matthews, D. I. (2008). Rate and mode of application of the urease inhibitor N-(n-butyl) thiophosphoric triamide on ammonia volatilization from surface-applied urea. Soil Use and Management 24, 246253.Google Scholar
Watson, C. J., Laughlin, R. J. & McGeough, K. L. (2009). Modification of nitrogen fertilisers using inhibitors: opportunities and potentials for improving nitrogen use efficiency. In Proceedings of the International Fertiliser Society 658. Leek, UK: International Fertiliser Society.Google Scholar
Webb, J., Seeney, F. M. & Sylvester-Bradley, R. (1998). The response to fertilizer nitrogen of cereals grown on sandy soils. Journal of Agricultural Science, Cambridge 130, 271286.Google Scholar
Williams, A. G., Audsley, E. & Sandars, D. L. (2006). Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. Main Report. Defra Project Report IS0205. Bedford, UK: Cranfield University and Defra. Available online at http://randd.defra.gov.uk/Document.aspx?Document=IS0205_3959_FRP.doc (verified 18 July 2012).Google Scholar
Woods, J., Williams, A., Hughes, J. K., Black, M. & Murphy, R. (2010). Energy and the Food System. Philosophical Transactions of the Royal Society B: Biological Sciences 365, 29913006.CrossRefGoogle ScholarPubMed
Zaman, M., Nguyen, M. L., Blennerhassett, J. D. & Quin, B. F. (2008). Reducing NH3, N2O and NO3 N losses from a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenous fertilizers. Biology and Fertility of Soils 44, 693705.Google Scholar