Published online by Cambridge University Press: 23 December 2019
Terminal heat stress leads to sizeable yield loss in late-sown wheat in tropical environments. Several synthetic compounds are known to counteract plant stress emanating from abiotic factors. A field experiment was conducted in Sabour (eastern India) during 2013–2016 to investigate the field efficacy of two synthetic compounds, calcium chloride (CaCl2) and arginine, for improving grain yield of two contrasting wheat cultivars (DBW 14 and K 307) facing terminal heat stress. For this, foliar spray of 18.0 mM CaCl2 at booting (CCB) or anthesis (CCA), 9.0 mM CaCl2 at both booting and anthesis (CCB+A), 2.5 mM arginine at booting (ARGB) or anthesis (ARGA) and 1.25 mM arginine at both booting and anthesis (ARGB+A) treatments along with no-spray and water-spray treatments were evaluated in late-sown wheat. The highest grain yield was recorded in treatment CCB+A, followed by CCA and ARGB+A. However, the effect of these compounds was marginal on grain yield when applied only at the booting stage. Grains/ear and thousand-grain weight were found to be the critical determinants for yield in late-sown wheat. During the anthesis to grain filling period, flag-leaf chlorophyll degradation and increase in relative permeability in no-spray treatment were 34–36% and 29–52%, respectively, but these values were reduced considerably in CCB+A treatment followed CCA. Thus, foliar spray of 9.0 mM CaCl2 both at booting and anthesis stages may be recommended for alleviating the negative impacts of terminal heat stress in late-sown wheat and improving its productivity (>13%).