Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T06:35:28.309Z Has data issue: false hasContentIssue false

The effects of three total mixed rations with different concentrate to maize silage ratios and different levels of microalgae Chlorella vulgaris on in vitro total gas, methane and carbon dioxide production

Published online by Cambridge University Press:  02 November 2016

A. E. KHOLIF
Affiliation:
Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, Egypt
M. M. Y. ELGHANDOUR
Affiliation:
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
A. Z. M. SALEM*
Affiliation:
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
A. BARBABOSA
Affiliation:
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México
O. MÁRQUEZ
Affiliation:
Centro Universitario Amecameca, Universidad Autónoma del Estado de México, Amecameca, México
N. E. ODONGO
Affiliation:
Department of Animal Sciences, School of Agriculture, Pwani University, P.O. Box 195-80108, Kilifi, Kenya
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The aim of the current study was to assess the effects of adding Chlorella vulgaris algae at different levels on in vitro gas production (GP) of three total mixed rations (TMR) with different concentrate (C): maize silage (S) ratios (25C : 75S, 50C : 50S, 75C : 25S). Chlorella vulgaris was added at 0, 20, 40 and 80 mg/g dry matter (DM) of the TMR and total gas, methane (CH4) and carbon dioxide (CO2) production were recorded after 2, 4, 6, 8, 10, 12, 24 and 48 h of incubation in three runs. Increasing concentrate portion in the TMR linearly increased the asymptotic GP and decreased the rate of GP without affecting the lag time. Addition of C. vulgaris at 20 mg/g DM to the 25C : 75S TMR increased the asymptotic GP, CH4, CO2 and GP at 48 h. Addition of C. vulgaris to the 50C : 50S TMR decreased the asymptotic GP and GP at 48 h. Higher CH4 production was observed at 48 h of incubation when C. vulgaris was included at (per g DM): 20 mg for the 25C : 75S ration, 40 mg for the 50C : 50S ration and 80 mg for the 75C : 25S ration. Inclusion of C. vulgaris linearly increased CH4 production for the 50C : 50S ration and increased CO2 production at 10 and 12 h of incubation for the 50C : 50S ration, whereas 20 and 40 mg C. vulgaris/g DM of the 75C : 25S TMR decreased CO2 production. The 25C : 75S TMR had the highest in vitro DM disappearance with C. vulgaris addition. Chlorella vulgaris addition was more effective with rations high in fibre content than those high in concentrates. It can be concluded that the optimal level of C. vulgaris addition was 20 mg/g DM for improved ruminal fermentation of the 25C : 75S TMR.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anele, U. Y., Yang, W. Z., McGinn, P. J., Tibbetts, S. M. & McAllister, T. A. (2016). Ruminal in vitro gas production, dry matter digestibility, methane abatement potential and fatty acid biohydrogenation of six species of microalgae. Canadian Journal of Animal Science 96, 354363.Google Scholar
AOAC (1997). Official Methods of Analysis of the Association of Official Analytical Chemists, Vol. 1, 16th edn. Washington, DC: Association of Official Analytical Chemists.Google Scholar
Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances 25, 207210.CrossRefGoogle ScholarPubMed
Blümmel, M., Steingass, H. & Becker, K. (1997). The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition 77, 911921.Google Scholar
Carro, M. D. & Miller, E. L. (1999). Effect of supplementing a fibre basal diet with different nitrogen forms on ruminal fermentation and microbial growth in an in vitro semi-continuous culture system (RUSITEC). British Journal of Nutrition 82, 149157.CrossRefGoogle Scholar
Chen, C. Y., Zhao, X. Q., Yen, H. W., Ho, S. H., Cheng, C. L., Lee, D. J., Bai, F. W. & Chang, J. S. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal 78, 110.CrossRefGoogle Scholar
Drewery, M. L., Sawyer, J. E., Pinchak, W. E. & Wickersham, T. A. (2014). Effect of increasing amounts of postextraction algal residue on straw utilization in steers. Journal of Animal Science 92, 46424649.Google Scholar
Dubois, B., Tomkins, N. W., Kinley, R. D., Bai, M., Seymour, S., Paul, N. A. & De Nys, R. (2013). Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. American Journal of Plant Sciences 4, 3443.CrossRefGoogle Scholar
Elghandour, M. M. Y., Vázquez-Chagoyán, J. C., Salem, A. Z. M., Kholif, A. E., Martínez-Castañeda, J. S., Camacho, L. M. & Cerrillo-Soto, M. A. (2014). Effects of Saccharomyces cerevisiae at direct addition or pre-incubation on in vitro gas production kinetics and degradability of four fibrous feeds. Italian Journal of Animal Science 13, 295301.CrossRefGoogle Scholar
Elghandour, M. M. Y., Kholif, A. E., Salem, A. Z. M., Montes De Oca, R., Barbabosa, A., Mariezcurrena, M. & Olafadehan, O. A. (2016 a). Addressing sustainable ruminal methane and carbon dioxide emissions of soybean hulls by organic acid salts. Journal of Cleaner Production 135, 194200.Google Scholar
Elghandour, M. M. M. Y., Kholif, A. E., Bastida, A. Z., Martínez, D. L. P. & Salem, A. Z. M. (2015 a). In vitro gas production of five rations of different maize silage and concentrate ratios influenced by increasing levels of chemically characterized extract of Salix babylonica . Turkish Journal of Veterinary and Animal Sciences 39, 186194.Google Scholar
Elghandour, M. M. M. Y., Kholif, A. E., Márquez-Molina, O., Vázquez-Armijo, J. F., Puniya, A. K. & Salem, A. Z. M. (2015 b). Influence of individual or mixed cellulase and xylanase mixture on in vitro rumen gas production kinetics of total mixed rations with different maize silage and concentrate ratios. Turkish Journal of Veterinary and Animal Science 39, 435442.Google Scholar
Elghandour, M. M. M. Y., Kholif, A. E., Hernandez, J., Mariezcurrena, M. D., Lopez, S., Camacho, L. M., Marquez, O. & Salem, A. Z. M. (2016 b). Influence of the addition of exogenous xylanase with or without pre-incubation on the in vitro ruminal fermentation of three fibrous feeds. Czech Journal of Animal Science 61, 262272.Google Scholar
Fievez, V., Boeckaert, C., Vlaeminck, B., Mestdagh, J. & Demeyer, D. (2007). In vitro examination of DHA-edible micro-algae. 2. Effect on rumen methane production and apparent degradability of hay. Animal Feed Science and Technology 136, 8095.CrossRefGoogle Scholar
Fiogbe, E. D., Micha, J. C. & Van Hove, C. (2004). Use of a natural aquatic fern, Azolla microphylla, as a main component in food for the omnivorous–phytoplanktonophagous tilapia, Oreochromis niloticus L. Journal of Applied Ichthyology 20, 517520.Google Scholar
France, J., Dijkstra, J., Dhanoa, M. S., López, S. & Bannink, A. (2000). Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. British Journal of Nutrition 83, 143150.Google Scholar
Garcia-Camacho, F., Gallardo-Rodriquez, J., Sanchez-Miron, A., Ceron-Gracia, M. C., Belarbi, E. H., Chisti, Y. & Molina-Grima, E. (2007). Biotechnological significance of toxic marine dinoflagellates. Biotechnology Advances 25, 176194.Google Scholar
Goel, G. & Makkar, H. P. S. (2012). Methane mitigation from ruminants using tannins and saponins, a status review. Tropical Animal Health Production 44, 729739.Google Scholar
Goering, M. K. & Van Soest, P. J. (1970). Forage Fiber Analysis (Apparatus, Reagents, Procedures and Some Applications). Agriculture Handbook, No. 379. Washington, DC: Agricultural Research Service, USDA.Google Scholar
Halama, D. (1990). Single cell protein. In Nonconventional Feedstuffs in the Nutrition of Farm Animals (Ed. Boda, K.), pp. 3449. New York: Elsevier Science Publishing Company, Inc.Google Scholar
Hamid, P., Akbar, T., Hossein, J. & Ali, M. G. (2007). Nutrient digestibility and gas production of some tropical feeds used in ruminant diets estimated by the in vivo and in vitro gas production techniques. American Journal of Animal and Veterinary Sciences 2, 108113.Google Scholar
Hudek, K., Davis, L. C., Ibbini, J. & Erickson, L. (2014). Commercial products from algae. In Algal Biorefineries (Eds Bajpai, R., Prokop, A. & Zappi, M.), pp. 275295. New York: Springer Science.Google Scholar
Hughes, A. D., Kelly, M. S., Black, K. D. & Stanley, M. S. (2012). Biogas from microalgae: is it time to revisit the idea? Biotechnology for Biofuels 5, 86. doi: 10.1186/1754-6834-5-86.Google Scholar
Iwamoto, H. (2004). Industrial production of microalgal cell-mass and secondary products – major industrial species. Chlorella. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology (Ed. Richmond, A.), pp. 255263. UK: Blackwell Science.Google Scholar
Janczyk, P., Langhammer, M., Renne, U., Guiard, V. & Souffrant, W. B. (2006). Effect of feed supplementation with Chlorella vulgaris powder on mice reproduction. Archiva Zootechnica 9, 122134.Google Scholar
Janczyk, P., Halle, B. & Souffrant, W. B. (2009). Microbial community composition of the crop and ceca contents of laying hens fed diets supplemented with Chlorella vulgaris . Poultry Science 88, 23242332.Google Scholar
Kholif, A. E., Morsy, T. A., Matloup, O. H., Anele, U. Y., Mohamed, A. G. & El-Sayed, A. B. (in press). Dietary Chlorella vulgaris microalgae improves feed utilization, milk production and concentrations of conjugated linoleic acids in the milk of Damascus goats. Journal of Agricultural Science, Cambridge. doi: 10.1017/S0021859616000824.Google Scholar
Kotrbáček, V., Doubek, J. & Doucha, J. (2015). The chlorococcalean alga Chlorella in animal nutrition: a review. Journal of Applied Phycology 27, 21732180.Google Scholar
Kumar, S., Dagar, S. S., Sirohi, S. K., Upadhyay, R. C. & Puniya, A. K. (2013). Microbial profiles, in vitro gas production and dry matter digestibility based on various ratios of roughage to concentrate. Annals of Microbiology 63, 541545.Google Scholar
Lum, K. K., Kim, J. & Lei, X. G. (2013). Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. Journal of Animal Science and Biotechnology 4, 5360.Google Scholar
Martin, C., Morgavi, D. P. & Doreau, M. (2010). Methane mitigation in ruminants: from microbe to the farm scale. Animal 4, 351365.CrossRefGoogle Scholar
Menke, K. H. & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28, 755.Google Scholar
Morgavi, D. P., Forano, E., Martin, C. & Newbold, C. J. (2010). Microbial ecosystem and methanogenesis in ruminants. Animal 4, 10241036.Google Scholar
National Standards of People's Republic of China (2010). National Food Safety Standard. Beijing, China: Ministry of Health of the People's Republic of China.Google Scholar
NRC (2001). Nutrient Requirements of Dairy Cattle, 7th revised edn. Washington, DC: National Academies Press.Google Scholar
Pereira, H., Barreira, L., Figueiredo, F., Custódio, L., Vizetto-Duarte, C., Polo, C., Rešek, E., Engelen, A. & Varela, J. (2012). Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Marine Drugs 10, 19201935.Google Scholar
Priyadarshani, I. & Rath, B. (2012). Commercial and industrial applications of micro algae – a review. Journal of Algal Biomass Utilization 3, 89100.Google Scholar
Rodriguez, M. P., Mariezcurrena, M. D., Mariezcurrena, M. A., Lagunas, B. C., Elghandour, M. M. M. Y., Kholif, A. M., Kholif, A. E., Almaráz, E. M. & Salem, A. Z. M. (2015). Influence of live cells or cells extract of Saccharomyces cerevisiae on in vitro gas production of a total mixed ration. Italian Journal of Animal Science 14, 590595.Google Scholar
SAS Institute (2002). SAS User's Guide: Statistics. Version 9.0. Cary, NC: SAS Institute.Google Scholar
Sayre, R. (2010). Microalgae: the potential for carbon capture. Bioscience 60, 722727.Google Scholar
Stewart, C. S., Flint, H. J. & Byrant, M. P. (1997). The rumen bacteria. In The Rumen Microbial Ecosystem (Eds Hobson, P. N. & Stewart, C. S.), pp. 1055. New York, NY: Blackie Academic and Professional.Google Scholar
Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B. & France, J. (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48, 185197.Google Scholar
Tibbetts, S. M., MacPherson, T., McGinn, P. J. & Fredeen, A. H. (in press). In vitro digestion of microalgal biomass from freshwater species isolated in Alberta, Canada for monogastric and ruminant animal feed applications. Algal Research. doi: 10.1016/j.algal.2016.01.016.Google Scholar
Tibbetts, S. M., Whitney, C. G., MacPherson, M. J., Bhatti, S., Banskota, A. H., Stefanova, R. & McGinn, P. J. (2015). Biochemical characterization of microalgal biomass from freshwater species isolated in Alberta, Canada for animal feed applications. Algal Research 11, 435447.Google Scholar
Tsiplakou, E., Abdullah, M. A. M., Skliros, D., Chatzikonstantinou, M., Flemetakis, E., Labrou, N. & Zervas, G. (2016). The effect of dietary Chlorella vulgaris supplementation on micro-organism community, enzyme activities and fatty acid profile in the rumen liquid of goats. Journal of Animal Physiology and Animal Nutrition. Early view article: doi: 10.1111/jpn.12521.Google Scholar
Vallejo, L. H., Salem, A. Z. M., Kholif, A. E., Elghangour, M. M. Y., Fajardo, R. C., Rivero, N., Bastida, A. Z. & Mariezcurrena, M. D. (2016). Influence of cellulase or xylanase on the in vitro rumen gas production and fermentation of corn stover. Indian Journal of Animal Sciences 86, 7074.Google Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle Scholar
Walker, D. A. (2009). Biofuels, facts, fantasy, and feasibility. Journal of Applied Phycology 21, 509517.Google Scholar
Yan, L., Lim, S. U. & Kim, I. H. (2012). Effect of fermented Chlorella supplementation on growth performance, nutrient digestibility, blood characteristics, fecal microbial and fecal noxious gas content in growing pigs. Asian-Australasian Journal of Animal Sciences 25, 17421747.CrossRefGoogle ScholarPubMed