Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T01:04:50.399Z Has data issue: false hasContentIssue false

Effects of the inclusion of flaxseed and quercetin in the diet of fattening lambs on ruminal microbiota, in vitro fermentation and biohydrogenation of fatty acids

Published online by Cambridge University Press:  08 December 2015

S. ANDRÉS*
Affiliation:
Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n. 24346 Grulleros, León, Spain
R. BODAS
Affiliation:
Instituto Tecnológico Agrario – Subdirección de Investigación y Tecnología, Consejería de Agricultura y Ganadería, Junta de Castilla y León. Finca Zamadueñas. Ctra. Burgos, km 119. 47071 Valladolid, Spain
M. L. TEJIDO
Affiliation:
Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n. 24346 Grulleros, León, Spain
F. J. GIRÁLDEZ
Affiliation:
Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n. 24346 Grulleros, León, Spain
C. VALDÉS
Affiliation:
Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n. 24346 Grulleros, León, Spain
S. LÓPEZ
Affiliation:
Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas s/n. 24346 Grulleros, León, Spain
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Thirty-two lambs (n = 8 per treatment) were fed a total mixed ration (TMR) formulated either with palm oil (CTRL; 34 g palm oil/kg TMR) or flaxseed (FS) (85 g FS/kg TMR) alone or enriched with quercetin (QCT, 34 g palm oil plus 2 g QCT/kg TMR; FS-QCT, 85 g FS plus 2 g QCT/kg TMR). The animals were slaughtered after being fed for at least 5 weeks with the experimental diets and samples of ruminal contents and ruminal liquid were collected for quantitative real-time polymerase chain reaction analyses of ruminal microbial species and fatty acid profile or in vitro fermentation, respectively. Results demonstrated that Butyrivibrio vaccenic acid (VA) and Butyrivibrio stearic acid (SA) producing bacteria copy numbers were decreased when FS was added to the diet of fattening lambs, which seemed to be in agreement with numerically (but not significantly) lower values for gas production, methane production and butyric acid during in vitro incubation. Ciliate protozoa were significantly enhanced by QCT, which was in accordance with numerically (but not significantly) higher values for in vitro methane production. Moreover, the modifications observed in ruminal microbial populations (Butyrivibrio and ciliate protozoa) when FS and QCT were included together (but not separately) in the diet of fattening lambs were probably related to a trend towards significantly higher values of rumenic acid (RA) in ruminal content. In conclusion, when FS and QCT were administered together in the diet of fattening lambs quantitative changes in the ruminal microbiota were observed, which might have promoted an increment of RA concentration in ruminal contents.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aldai, N., Lavín, P., Kramer, J. K. G., Jaroso, R. & Mantecón, A. R. (2012). Breed effect on quality veal production in mountain areas: emphasis on meat fatty acid composition. Meat Science 92, 687696.CrossRefGoogle ScholarPubMed
Andrés, S., Morán, L., Aldai, N., Tejido, M. L., Prieto, N., Bodas, R. & Giráldez, F. J. (2014). Effects of linseed and quercetin added to the diet of fattening lambs on the fatty acid profile and lipid antioxidant status of meat samples. Meat Science 97, 156163.Google Scholar
AOAC (1999). Official Methods of Analysis, 16th edn, Washington, DC: Association of Analytical Chemists.Google Scholar
Benchaar, C. & Chouinard, P. Y. (2009). Assessment of the potential of cinnamaldehyde, condensed tannins, and saponins to modify milk fatty acid composition of dairy cows. Journal of Dairy Science 92, 33923396.Google Scholar
Benchaar, C., McAllister, T. A. & Chouinard, P. Y. (2008). Digestion, ruminal fermentation, ciliate protozoal populations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensed tannin, or Yucca schidigera saponin extracts. Journal of Dairy Science 91, 47654777.Google Scholar
Berger, L. M., Wein, S., Blank, R., Metges, C. C. & Wolffram, S. (2012). Bioavailability of the flavonol quercetin in cows after intraruminal application of quercetin aglycone and rutin. Journal of Dairy Science 95, 50475055.CrossRefGoogle ScholarPubMed
Boeckaert, C., Fievez, V., Van Hecke, D., Verstraete, W. & Boon, N. (2007). Changes in rumen biohydrogenation intermediates and ciliate protozoa diversity after algae supplementation to dairy cattle. European Journal of Lipid Science and Technology 109, 767777.Google Scholar
Boeckaert, C., Vlaeminck, B., Fievez, V., Maignien, L., Dijkstra, J. & Boon, N. (2008). Accumulation of trans C18:1 fatty acids in the rumen after dietary algal supplementation is associated with changes in the Butyrivibrio community. Applied and Environmental Microbiology 74, 69236930.CrossRefGoogle ScholarPubMed
Cabiddu, A., Molle, G., Decandia, M., Spada, S., Fiori, M., Piredda, G. & Addis, M. (2009). Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep. Part 2: effects on milk fatty acid profile. Livestock Science 123, 230240.Google Scholar
Carro, M. D. & Miller, E. L. (1999). Effect of supplementing a fibre basal diet with different nitrogen forms on ruminal fermentation and microbial growth in an in vitro semi-continuous culture system (RUSITEC). British Journal of Nutrition 82, 149157.CrossRefGoogle Scholar
Chilliard, Y., Glasser, F., Ferlay, A., Bernard, L., Rouel, J. & Doreau, M. (2007). Diet, rumen biohydrogenation and nutritional quality of cow and goat milk. European Journal of Lipid Science and Technology 109, 828855.CrossRefGoogle Scholar
EC (1986). Council Directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. Official Journal of the European Communities L358, 128.Google Scholar
Ferlay, A., Martin, B., Lerch, S., Gobert, M., Pradel, P. & Chilliard, Y. (2010). Effects of supplementation of maize silage diets with extruded linseed, vitamin E and plant extracts rich in polyphenols, and morning v. evening milking on milk fatty acid profiles in Holstein and Montbeliarde cows. Animal 4, 627640.CrossRefGoogle Scholar
Gadeyne, F., Van Ranst, G., Vlaeminck, B., Vossen, E., Van der Meeren, P. & Fievez, V. (2015). Protection of polyunsaturated oils against ruminal biohydrogenation and oxidation during storage using a polyphenol oxidase containing extract from red clover. Food Chemistry 171, 241250.Google Scholar
Goering, H. K. & Van Soest, P. J. (1970). Forage Fiber Analyses (Apparatus, Reagents, Procedures and some Applications). USDA Handbook No 379. Washington, DC: USDA-ARS.Google Scholar
Griinari, J. M., Corl, B. A., Lacy, S. H., Chouinard, P. Y., Nurmela, K. V. V. & Bauman, D. E. (2000). Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ9-desaturase. Journal of Nutrition 130, 22852291.Google Scholar
Hongoh, Y., Yuzawa, H., Ohkuma, M. & Kudo, T. (2003). Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiology Letters 221, 299304.CrossRefGoogle ScholarPubMed
Jenkins, T. C. (1993). Lipid metabolism in the rumen. Journal of Dairy Science 76, 38513863.CrossRefGoogle ScholarPubMed
Jenkins, T. C., Wallace, R. J., Moate, P. J. & Mosley, E. E. (2008). Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science 86, 397412.Google Scholar
Kamra, D. N. (2005). Rumen microbial ecosystem. Current Science 89, 124135.Google Scholar
Khiaosa-Ard, R., Bryner, S. F., Scheeder, M. R. L., Wettstein, H. R., Leiber, F., Kreuzer, M. & Soliva, C. R. (2009). Evidence for the inhibition of the terminal step of ruminal alpha-linolenic acid biohydrogenation by condensed tannins. Journal of Dairy Science 92, 177188.Google Scholar
Kim, Y. J., Liu, R. H., Bond, D. R. & Russell, J. B. (2000). Effect of linoleic acid concentration on conjugated linoleic acid production by Butyrivibrio fibrisolvens A38. Applied and Environmental Microbiology 66, 52265230.Google Scholar
Lee, C., Kim, J., Shin, S. G. & Hwang, S. (2006). Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli . Journal of Biotechnology 123, 273280.Google Scholar
Lee, Y. J. & Jenkins, T. C. (2011). Biohydrogenation of linolenic acid to stearic acid by the rumen microbial population yields multiple intermediate conjugated diene isomers. Journal of Nutrition 141, 14451450.CrossRefGoogle ScholarPubMed
Li, L., Schoenhals, K. E., Brady, P. A., Estill, C. T., Perumbakkam, S. & Craig, A. M. (2012). Flaxseed supplementation decreases methanogenic gene abundance in the rumen of dairy cows. Animal 6, 17841787.CrossRefGoogle ScholarPubMed
Liu, W. T., Marsh, T. L., Cheng, H. & Forney, L. J. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology 63, 45164522.Google Scholar
Lowry, J. B. & Kennedy, P. M. (1996). Fermentation of flavonols by rumen organisms. Proceedings of the Australian Society of Animal Production 21, 366.Google Scholar
Machmüller, A., Ossowski, D. A. & Kreuzer, M. (2000). Comparative evaluation of the effects of coconut oil, oilseeds and crystalline fat on methane release, digestion and energy balance in lambs. Animal Feed Science and Technology 85, 4160.Google Scholar
Maeda, H., Fujimoto, C., Haruki, Y., Maeda, T., Kokeguchi, S., Petelin, M., Arai, H., Tanimoto, I., Nishimura, F. & Takashiba, S. (2003). Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomicetescomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunology and Medical Microbiology 39, 8186.Google Scholar
Maia, M. R. G., Chaudhary, L. C., Figueres, L. & Wallace, R. J. (2007). Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek 91, 303314.Google Scholar
Maia, M. R. G., Chaudhary, L. C., Bestwick, C. S., Richardson, A. J., McKain, N., Larson, T. R., Graham, I. A. & Wallace, R. J. (2010). Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens . BMC Microbiology 10, 52. doi: 10.1186/1471-2180-10-52.Google Scholar
Mihaliková, K., Gresáková, L., Boldizárová, K., Faix, S., Leng, L. & Kisidayová, S. (2005). The effects of organic selenium supplementation on the rumen ciliate population in sheep. Folia Microbiologica (Prague) 50, 353356.Google Scholar
Oldick, B. S. & Firkins, J. L. (2000). Effects of degree of fat saturation on fiber digestion and microbial protein synthesis when diets are fed twelve times daily. Journal of Animal Science 78, 24122420.CrossRefGoogle ScholarPubMed
Or-Rashid, M. M., Al Zahal, O. & McBride, B. W. (2008). Studies on the production of conjugated linoleic acid from linoleic and vaccenic acids by mixed rumen protozoa. Applied Microbiology and Biotechnology 81, 533541.CrossRefGoogle ScholarPubMed
Oskoueian, E., Abdullah, N. & Oskoueian, A. (2013). Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. BioMed Research International, Article ID 349129, 8. doi: 10.1155/2013/349129.Google Scholar
Paillard, D., McKain, N., Rincon, M. T., Shingfield, K. J., Givens, D. I. & Wallace, R. J. (2007). Quantification of ruminal Clostridium proteoclasticum by real-time PCR using a molecular beacon approach. Journal of Applied Microbiology 103, 12511261.Google Scholar
Palmquist, D. L., St-Pierre, N. & McClure, K. E. (2004). Tissue fatty acid profiles can be used to quantify endogenous rumenic acid synthesis in lambs. Journal of Nutrition 134, 24072414.Google Scholar
Palmquist, D. L., Lock, A. L., Shingfield, K. J. & Bauman, D. E. (2005). Biosynthesis of conjugated linoleic acid in ruminants and humans. Advances in Food and Nutrition Research 50, 179217.Google Scholar
Rana, M. S., Tyagi, A., Hossain, S. A. & Tyagi, A. K. (2012). Effect of tanniniferous Terminalia chebula extract on rumen biohydrogenation, ∆9-desaturase activity, CLA content and fatty acid composition in longissimus dorsi muscle of kids. Meat Science 90, 558563.Google Scholar
Santora, J. E., Palmquist, D. L. & Roehrig, K. L. (2000). Trans-vaccenic acid is desaturated to conjugated linoleic acid in mice. Journal of Nutrition 130, 208215.Google Scholar
SAS Institute Inc (2012). SAS/STAT® 12.2 User's Guide. NC, USA: SAS Inst Inc.Google Scholar
Sylvester, J. T., Karnati, S. K. R., Yu, Z., Morrison, M. & Firkins, J. L. (2004). Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. Journal of Nutrition 134, 33783384.Google Scholar
Van Soest, P. J., Roberston, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.Google Scholar
Vasta, V., Makkar, H. P. S., Mele, M. & Priolo, A. (2009 a). Ruminal biohydrogenation as affected by tannins in vitro . British Journal of Nutrition 102, 8292.CrossRefGoogle ScholarPubMed
Vasta, V., Mele, M., Serra, A., Scerra, M., Luciano, G., Lanza, M. & Priolo, A. (2009 b). Metabolic fate of fatty acids involved in ruminal biohydrogenation in sheep fed concentrate or herbage with or without tannins. Journal of Animal Science 87, 26742684.Google Scholar
Vasta, V., Yáñez-Ruiz, D. R., Mele, M., Serra, A., Luciano, G., Lanza, M., Biondi, L. & Priolo, A. (2010). Bacterial and protozoal communities and fatty acid profile in the rumen of sheep fed a diet containing added tannins. Applied and Environmental Microbiology 76, 25492555.Google Scholar
Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., Hughes, S. I. & Whittington, F. M. (2008). Fat deposition, fatty acid composition and meat quality: a review. Meat Science 78, 343358.Google Scholar
Yang, S. L., Bu, D. P., Wang, J. Q., Hu, Z. Y., Li, D., Wei, H. Y., Zhou, L. Y. & Loor, J. J. (2009). Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows. Animal 3, 15621569.Google Scholar