Published online by Cambridge University Press: 02 October 2002
Leaflet movement in soyabean (Glycine max (L.) Merr.) is considered to be an important physiological adaptation for intercepting sunlight for photosynthesis. Solar tracking may serve to increase plant production by maximizing light interception. The objective of this study was to determine the response of A (leaflet net assimilation rate), τ (stomatal conductance) and Ci (internal leaf carbon dioxide concentration) when penultimate fully expanded leaflet angles were changed. Soyabean (cv. Enrei, Maturity group VI) was planted at Niigata University, Japan, at two densities (25 and 16 plants/m2) in mid-May of 1992 and 1993. PFD (photon flux density), A, τ, and Ci were measured with a portable leaf photosynthesis instrument. The more towards vertical the leaflets were moved, the lower the PFD and A were. A measured at R5 showed no light saturation, but did show this at V13 and R3. While A measured at 09.00 h showed no saturation point, there was saturation at 12.00 h and 15.00 h at or less than 1500 μmol/m2/s. At R3 a high correlation (r = 0.89, P < 0.01) was found between PFD and A for naturally oriented leaflets, but not for horizontal ones. These results suggest that leaflet movement is an adaptation to optimize A.