Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-04T19:42:45.991Z Has data issue: false hasContentIssue false

Effects of sample preparation on nitrogen degradability of pangola grass (Digitaria decumbens) and tropical tree legumes

Published online by Cambridge University Press:  27 March 2009

G. Aumont
Affiliation:
Station de Recherches Zootechniques, Institut National de la Recherche Agronomique, BP 1232, 97 185 Pointe-à-Pitre Cédex, Guadeloupe (French West Indies)
G. Saminadin
Affiliation:
Station de Recherches Zootechniques, Institut National de la Recherche Agronomique, BP 1232, 97 185 Pointe-à-Pitre Cédex, Guadeloupe (French West Indies)
P. Cerneau
Affiliation:
Station de Recherches Zootechniques, Institut National de la Recherche Agronomique, BP 1232, 97 185 Pointe-à-Pitre Cédex, Guadeloupe (French West Indies)
A. Xandé
Affiliation:
Station de Recherches Zootechniques, Institut National de la Recherche Agronomique, BP 1232, 97 185 Pointe-à-Pitre Cédex, Guadeloupe (French West Indies)

Summary

The effects of particle size on the nitrogen degradability of four tropical forages were studied in 1991 in Guadeloupe. Samples of pangola grass (Digitaria decumbens) 22 and 47 days old, Gliricidia sepium and Leucaena leucocephala were prepared as follows: grasses were (1) freshly cut with scissors to 0·5–1·0 cm in length and frozen at – 18 °C; or for later study were dried at 80 °C and ground to pass a (2) 0·5 mm, (3) 10 mm or (4) 20 mm screen. Nitrogen degradability (ND) was determined by placing samples in nylon bags with two different pore sizes (25 and 46 μm) which were then put into the rumen of cows for 2, 4, 8, 16, 24 and 48 h. The kinetics of nitrogen degradation were examined using Ørskov's model. Particle losses through the nylon bags, dry matter (DM) and nitrogen solubility of the samples were also measured in vitro. The sample preparation and the type of forage were the main sources of variation in the rapidly degradable nitrogen fraction, the slowly degradable nitrogen fraction, the degradation rate, the potentially degradable nitrogen fraction and ND. Nitrogen degradability was 55·8,46·7, 640 and 46·5% for pangola grass (at 22 and 47 days regrowth), Gliricidia and Leucaena samples, respectively. Mean ND was 47·9, 59·4, 56·1 and 49·6% for freshly cut and 0·5, 1·0 and 2·0 mm dried ground samples, respectively. Sample preparation had little effect on nitrogen solubility. For samples dried and ground at 0·5 and 1·0 mm, particle losses were 18·8 and 15·0% of DM, respectively. The insoluble but degradable fraction was 60·8, 51·9, 42·5 and 42·7% for freshly cut and 0·5, 1·0 and 2·0 mm dried ground samples, respectively. The freshly cut material appeared to be suitable for the estimation of ND in tropical forages.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock. Farnham Royal: Commonwealth Agricultural Bureaux.Google Scholar
Beever, D. E., Thomson, D. J. & Cammell, S. B. (1976). The digestion of frozen and dried grass by sheep. Journal of Agricultural Science, Cambridge 86, 443452.CrossRefGoogle Scholar
Cerneau, P., Xandé, A. & Aumont, G. (1993). In situ degradation of four tropical forages. Annales de Zootechnie 42, 141.CrossRefGoogle Scholar
Chadhokar, P. A. & Kantharaju, H. R. (1980). Effect of Gliricidia maculata on growth and breeding of Bannur ewes. Tropical Grasslands 14, 7882.Google Scholar
Chapman, P. G. & Norton, B. W. (1982). The effect of sample preparation on the digestion of chopped, masticated and ground siratro and pangola grass in nylon bags. Proceedings of the Australian Society of Animal Production 14, 580583.Google Scholar
Cooksley, D. G., Prinsen, J. H., Paton, C. J. & Pini, J. A. (1991). Performance of a beef cattle production system on native pasture using Leucaena leucocephala as a supplement. Livestock Production Science 28, 6572.CrossRefGoogle Scholar
Kamoun, M. & Thewis, A. (1990). Influence du mode de conditionnement d'un fourrage vert sur sa composition chimique, la digestibilité in vitro de la matière organique et de la dégradabilité in sacco de l'azote dans le rumen. Reproduction Nutrition Développement (Supplement 2) 159160.CrossRefGoogle Scholar
Kristensen, E. S., Moller, P. D. & Hvelplund, T. (1982). Estimation of the effective protein degradability in the rumen of cows using the nylon bag technique combined with the outflow rate. Acta Agriculturae Scandinavica 32, 123127.CrossRefGoogle Scholar
Lindberg, J. E. (1981). The effect of sample size and sample structure on the degradation of dry matter, nitrogen and cell walls in nylon bags. Swedish Journal of Agricultural Research 11, 7176.Google Scholar
Lindberg, J. E. (1985). Estimation of rumen degradability of feed proteins with the in sacco technique and various in vitro methods: a review. Acta Agriculturae Scandinavica (Supplement) 25, 6497.Google Scholar
Makkar, H. P. S., Singh, B. & Negi, S. S. (1989). Relationship of rumen degradability with microbial colonization, cell wall constituents and tannin levels in some tree leaves. Animal Production 49, 299303.Google Scholar
Marquardt, W. (1963). An algorithm for least squares estimation of nonlinear parameters. Journal of the Society of Industrial and Applied Mathematics 11, 431441.CrossRefGoogle Scholar
Michalet-Doreau, B. (1990). Influence de la nature de l'aliment sur l'importance des pertes en particules dans la mesure de la dégradabilité in sacco de l'azote des aliments. Reproduction Nutrition Développement (Supplement 2), 151152.CrossRefGoogle Scholar
Michalet-Doreau, B. & Aufrère, J. (1990). Nouvelles méthodes d'estimation de la valeur alimentaire des fourrages. Fourrages 122, 189201.Google Scholar
Michalet-Doreau, B. & Cerneau, P. (1991). Influence of foodstuff particle size on in situ degradation of nitrogen in the rumen. Animal Feed Science and Technology 35, 6981.CrossRefGoogle Scholar
Michalet-Doreau, B., Vérité, R. & Chapoutot, P. (1987). Methodologie de mesure de la dégradabilité in sacco de l'azote des aliments dans le rumen. Bulletin Technique du CRZV Theix, INRA 69, 57.Google Scholar
Nocek, J. E. (1985). Evaluation of specific variables affecting in situ estimates of ruminal dry matter and protein digestion. Journal of Animal Science 60, 13471358.CrossRefGoogle Scholar
Ørskov, E. R. & McDonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, Cambridge 92, 499503.CrossRefGoogle Scholar
Ould-Bah, M. Y. & Michalet-Doreau, B. (1988). Influence du traitement des fourrages verts sur la cinétique de dégradation in sacco de l'azote dans le rumen. Reproduction Nutrition Développement 28 (Supplement 1) 103104.CrossRefGoogle Scholar
Parra, A., Combellas, J. & Dixon, R. (1984). Rumen degradability of some tropical feedstuffs. Tropical Animal Production 9, 196199.Google Scholar
Peyraud, J. L. (1990). Influence du mode de séchage et de la finesse de broyage des échantillons de fourrages sur l'estimation de la dégradabilite de l'azote dans le rumen. Reproduction Nutrition Développement (Supplement 2), 153154.CrossRefGoogle Scholar
Sampath, K. T., Subba Rao, A. & Sampath, S. R. (1989). Ruminal protein degradability of certain feedstuffs determined by nylon bag technique. Indian Journal of Animal Sciences 59, 13041307.Google Scholar
Sas Institute (1987). SAS/STAT Guide for Personal Computers, Version 6 Edition. Cary, NC: SAS Institute.Google Scholar
Shaver, R. D., Nytes, A. J., Jones, B. A., Satter, L. D. & Jorgensen, N. A. (1984). Influence of forage particle length on in situ degradation of prebloom alfalfa hay. Journal of Animal Science 59 (Supplement 1), 295 (Abstract).Google Scholar
Teixeira, J. C., Evangelista, A. R., Fonseca, E. C., Fontes, C. jr & De Oliveira, A. I. G. (1991). Rumen in situ digestibility of dry matter (DM), neutral detergent fiber (NDF) and crude protein (CP), from different forage. Journal of Dairy Science 74 (Supplement 1), 182 (Abstract).Google Scholar
Van Keuren, R. W. & Heinemann, W. W. (1962). Study of a nylon bag technique for in vivo estimation of forage digestibility. Journal of Animal Science 21, 340345.CrossRefGoogle Scholar
Vanhatalo, A. & Varvikko, T. (1989). Influence of sample preparation on the ruminal nylon bag degradation values of grass silage. Asian-Australasian Journal of Animal Science 2, 413415.CrossRefGoogle Scholar
Vérité, R., Journet, M. & Jarrige, R. (1979). A new system for the protein feeding of ruminants: the PDI system. Livestock Production Science 6, 349367.CrossRefGoogle Scholar
Vérité, R., Michalet-Doreau, B., Chapoutot, P., Peyraud, J. L. & Poncet, C. (1987). Révision du système des protéines digestibles dans l'intestin (PDI). Bulletin Technique du CRZV Theix, INRA 70, 1934.Google Scholar
Xandé, A., Garcia-Trujillo, R. & Caceres, O. (1989). Feeds of the humid tropics (West Indies). In Ruminant Nutrition, Recommended Allowances and Feed Tables (Ed. Jarrige, R.), pp. 347362. Paris: INRA.Google Scholar