Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T22:27:23.276Z Has data issue: false hasContentIssue false

Effects of pea (Pisum sativum L.) cultivars on Thrips tabaci Lindeman preference and performance

Published online by Cambridge University Press:  22 August 2013

M. POBOŻNIAK*
Affiliation:
Department of Plant Protection, Faculty of Horticulture, University of Agriculture, al. 29 Listopada 54, 31-425 Cracow, Poland
E. H. KOSCHIER
Affiliation:
Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences (BOKU) Vienna, Peter Jordan-Strasse 82, 1190 Vienna, Austria
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The polyphagous onion thrips Thrips tabaci Lindeman (Thysanoptera: Thripidae) is a serious pest in many protected and field crops and has recently been found to occur in high numbers in Pisum sativum L. crops. In the present study, the abundance of T. tabaci was compared on two pea cultivars in the field. Data on sweep net catches at different sampling times during the day suggest that peak activity of the thrips is at noon. Significantly more thrips larvae and adults were caught on the early pea cultivar Cud Kelwedonu compared with the very early cultivar Pionier, particularly during and after flowering of the peas. Analysis of primary plant compounds indicated that the higher leaf nitrogen and sucrose contents in the leaves of cvar Cud Kelwedonu promote thrips population growth in pea. The preference of T. tabaci for leaves of cvar Cud Kelwedonu was confirmed in experiments in the laboratory. Thrips tended to settle, caused significantly more feeding damage and laid significantly more eggs on the leaves of Cud Kelwedonu. Knowledge on abundance, activity patterns and host use of T. tabaci in pea may contribute to optimizing cultivar selection, monitoring and timing of possible control measures in the future.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ananthakrishnan, T. N. (1993). Bionomics of thrips. Annual Review of Entomology 38, 7192.Google Scholar
Ananthakrishnan, T. N. & Gopichandran, R. (1993). Chemical Ecology in Thrips-host Plant Interactions. New Delhi: Oxford & IBH Publishers.Google Scholar
Baez, I., Reitz, S. R., Funderburk, J. E. & Olson, S. M. (2011). Variation within and between Frankliniella thrips species in host plant utilization. Journal of Insect Science 11, 41. Available from: http://www.insectscience.org/11.41/i1536-2442-11-41.pdf (verified 6 April 2011).Google Scholar
Brodbeck, B. V., Stavisky, J., Funderburk, J. E., Andersen, P. C. & Olson, S. M. (2001). Flower nitrogen status and populations of Frankliniella occidentalis feeding on Lycopersicon esculentum . Entomologia Experimentalis et Applicata 99, 165172.Google Scholar
Burnstone, J. & Collier, R. (2009). Improving the targeting of thrips control measures. IOBC-WPRS Bulletin 51, 4956.Google Scholar
Chau, A., Heinz, K. M. & Davies, F. T. Jr. (2005). Influences of fertilization on population abundance, distribution, and control of Frankliniella occidentalis on chrysanthemum. Entomologia Experimentalis et Applicata 117, 2739.Google Scholar
Chen, Y., Williams, K. A., Harbaugh, B. K. & Bell, M. L. (2004). Effects of tissue phosphorus and nitrogen in impatiens wallerana on western flower thrips (Frankliniella occidentalis) population levels and plant damage. HortScience 39, 545550.Google Scholar
Chow, A., Chau, A. & Heinz, K. M. (2012). Reducing fertilization: a management tactic against western flower thrips on roses. Journal of Applied Entomology 136, 520529.CrossRefGoogle Scholar
Davies, F. T., He, C. J., Chau, A., Spiers, J. D. & Heinz, K. M. (2005). Fertiliser application affects susceptibility of chrysanthemum to western flower thrips’ abundance and influence on plant growth, photosynthesis and stomatal conductance. Journal of Horticultural Science and Biotechnology 80, 403412.Google Scholar
Den Belder, E. & Elderson, J. (1999). The influence of undersown clover and different fertiliser levels on infestations of the onions thrips in leek crops. IOBC/WPRS Bulletin 22, 151156.Google Scholar
Diaz-Montano, J., Fuchs, M., Nault, B. A., Fail, J. & Shelton, A. M. (2011). Onion thrips (Thysanoptera: Thripidae): a global pest of increasing concern in onion. Journal of Economic Entomology 104, 113.CrossRefGoogle ScholarPubMed
Diaz-Montano, J., Fail, J., Deutschlander, M., Nault, B. A. & Shelton, A. M. (2012). Characterization of resistance, evaluation of the attractiveness of plant odors, and effect of leaf color on different onion cultivars to onion thrips (Thysanoptera: Thripidae). Journal of Economic Entomology 105, 632641.Google Scholar
Feller, C., Bleiholder, H., Buhr, L., Hack, H., Hess, M., Klose, R., Meier, U., Strauss, R., Van Den Boom, T. & Weber, E. (1995). Phänologische Entwicklungsstadien von Gemüsepflanzen: II Fruchtgemüse und Hülsenfrüchte. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 47, 217232.Google Scholar
Jenser, G. & Szénási, A. (2004). Review of the biology and vector capability of Thrips tabaci Lindeman (Thysanoptera: Thripidae). Acta Phytopathologica et Entomologica Hungarica 39, 137155.Google Scholar
Kahrer, A. & Gross, M. (2002). Gemüseschädlinge. Erkennung, Lebensweise, Bekämpfung. Leopoldsdorf: Österreichischer Agrarverlag.Google Scholar
Koschier, E. H. (2008). Essential oil compounds for thrips control – a review. Natural Products Communications 3, 11711182.Google Scholar
Liang, X. H., Lei, Z. R., Wen, J. Z. & Zhu, M. L. (2010). The diurnal flight activity and influential factors of Frankliniella occidentalis in the greenhouse. Insect Science 17, 535541.CrossRefGoogle Scholar
Liu, T. X. (2004). Seasonal population dynamics, life stage composition of Thrips tabaci (Thysanoptera: Thripidae), and predaceous natural enemies on onions in south Texas. Southwestern Entomologist 29, 127135.Google Scholar
Loomans, A. J. M. & Murai, T. (1997). Culturing thrips and parasitoids. In Thrips as Crop Pests (Ed Lewis, T.), pp. 477503. Wallingford, Oxon, UK: CAB International.Google Scholar
Malik, M. F., Nawaz, M., Ellington, J., Sanderson, R. & El-Heneidy, A. H. (2009). Effect of different nitrogen regimes on onion thrips, Thrips tabaci Lindeman, on onions, Allium cepa L. Southwestern Entomologist 34, 219225.Google Scholar
Martin, N. A. & Workman, P. J. (2006). A new bioassay for determining the susceptibility of onion (Allium cepa) bulbs to onion thrips, Thrips tabaci (Thysanoptera: Thripidae). New Zealand Journal of Crop and Horticultural Science 34, 8592.Google Scholar
Mateus, C., Araujo, J. & Mexia, A. (1996). Daily flight periodicity of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Folia Entomologica Hungarica 57 (Suppl.), 97102.Google Scholar
Meier, U. (2001). Growth Stages of Mono and Dicotyledonous Plants. BBCH Monograph, 2nd edn. Berlin: Federal Biological Research Centre for Agriculture and Forestry.Google Scholar
Mo, J. H., Munro, S., Boulton, A. & Stevens, M. (2008). Within-plant distribution of onion thrips (Thysanoptera: Thripidae) in onions. Journal of Economic Entomology 101, 13311336.Google Scholar
Mollema, C. & Cole, R. A. (1996). Low aromatic amino acid concentrations in leaf proteins determine resistance to Frankliniella occidentalis in four vegetable crops. Entomologia Experimentalis et Applicata 78, 325333.Google Scholar
Moritz, G. (2006). Thripse. Fransenflügler, Thysanoptera. Pflanzensaftsaugende Insekten, Band 1. Hohenwarsleben, Germany: Westarp Wissenschaften Verlagsgesellschaft.Google Scholar
Nath, N. & Singh, M. P. (1965). Mechanism of the oxidation of reducing sugars (hexoses) by hexacyanoferrate (III) in alkaline medium and Lobry de Bruyn transformation. Journal of Physical Chemistry 69, 20382043.Google Scholar
Persson, J. A., Wennerholm, M. & O'Halloran, S. (2008). Handbook for Kjeldahl Digestion. Hilleroed, Denmark: FOSS.Google Scholar
Pobożniak, M. (2011). The occurrence of thrips (Thysanoptera) on food legumes (Fabaceae). Journal of Plant Diseases and Protection 118, 185193.Google Scholar
Riefler, J. & Koschier, E. H. (2009). Comparing behavioural patterns of Thrips tabaci Lindeman on leek and cucumber. Journal of Insect Behavior 22, 111120.Google Scholar
Samotus, B., Tuz, J. & Doerre, E. (1993). Evaluation of blue value in different plant materials as a tool for rapid starch determination. Acta Societatis Botanicorum Poloniae 62, 137141.Google Scholar
Schuch, U. K., Redak, R. A. & Bethke, J. A. (1998). Cultivar, fertilizer, and irrigation affect vegetative growth and susceptibility of chrysanthemum to western flower thrips. Journal of the American Society for Horticultural Science 123, 727733.Google Scholar
Scott Brown, A. S., Simmonds, M. S. J. & Blaney, W. M. (2002). Relationship between nutritional composition of plant species and infestation levels of thrips. Journal of Chemical Ecology 28, 23992409.Google Scholar
Selvaraj, S. & Adiroubane, D. (2012). Influence of weather parameters on the incidence of thrips, Thrips tabaci Lindemann in cotton. Journal of Cotton Research and Development 26, 234237.Google Scholar
Trdan, S., Valič, N. & Žnidarčič, D. (2007). Field efficacy of deltamethrin in reducing damage caused by Thrips tabaci Lindeman (Thysanoptera: Thripidae) on early white cabbage. Journal of Pest Science 80, 217223.Google Scholar
Von Oettingen, H. (1951). Thrips tabaci Lindem. als Erbsenschädling. Beiträge zur Entomologie 1, 4243.Google Scholar
Weber, E. & Bleiholder, H. (1990). Erläuterungen zu den BBCH-Dezimal-Codes für die Entwicklungsstadien von Mais, Raps, Faba-Bohne, Sonnenblume und Erbse. Gesunde Pflanzen 42, 308321.Google Scholar
Westerveld, S., Mckeown, A., Mcdonald, M. R. & Scot-Dupree, C. (2001). Effect of nitrogen source and rate on the nitrogen status, pest pressures, and yield of onions grown on muck and mineral soil in Ontario (poster 247). HortScience 36, 503.Google Scholar
Whittaker, M. S. & Kirk, W. D. J. (2004). The effect of photoperiod on walking, feeding, and oviposition in the western flower thrips. Entomologia Experimentalis et Applicata 111, 209214.Google Scholar
Wiedenfeld, R., Scully, B., Miller, M., Edelson, J. & Wang, J. (1990). Foliar nitrogen effects on onion production and damage by thrips and purple blotch (abstract). HortScience 25, 864.Google Scholar
Wnuk, A. & Pobożniak, M. (2003). The occurrence Of thrips (Thripdae, Thysanoptera) on different cultivars of pea (Pisum sativum L.). Journal of Plant Protection Research 43, 7785.Google Scholar
Zawirska, I. (1994). Thrips (Thysanoptera). In Diagnostics of Plant Pests and their Natural Enemies (Eds Kozłowski, M. W. & Boczek, J.), pp. 145174. Warszawa, Poland: SGGW.Google Scholar
Zur Strassen, R. (2003). Die terebranten Thysanopteren Europas und des Mittelmeergebietes. Die Tierwelt Deutschlands Teil 74. Keltern, Germany: Goecke & Evers.Google Scholar
Žnidarčič, D., Vidrih, R., Germ, D., Ban, D. & Trdan, S. (2007). Relationship between water-soluble carbohydrate composition of cabbage (Brassica oleracea L. var. capitata) and damage levels of onion thrips. Acta Agriculturae Slovenica 89, 2533.Google Scholar